结核与肺部疾病杂志 ›› 2025, Vol. 6 ›› Issue (1): 94-101.doi: 10.19983/j.issn.2096-8493.2024141
收稿日期:
2024-09-24
出版日期:
2025-02-20
发布日期:
2025-02-20
通信作者:
李锋
E-mail:lifeng@shphc.org.cn
基金资助:
Received:
2024-09-24
Online:
2025-02-20
Published:
2025-02-20
Contact:
Li Feng
E-mail:lifeng@shphc.org.cn
Supported by:
摘要:
结核病仍然是全球范围内最具威胁的传染性疾病之一。在结核分枝杆菌潜伏感染中,病原体可以长时间处于休眠状态,等待宿主免疫功能下降时再激活。结核病的免疫应答依赖于适应性免疫,特别是T淋巴细胞。其中CD4+ T淋巴细胞通过释放γ-干扰素来激活巨噬细胞,而CD8+T淋巴细胞则直接杀伤受感染的宿主细胞。长期慢性的感染往往导致T淋巴细胞功能的衰竭,免疫系统无法有效清除病原体。程序性死亡受体1(programmed death 1, PD-1)和程序性死亡配体1(programmed cell death-ligand 1, PD-L1)抑制剂作为免疫检查点抑制剂,已经展现出恢复免疫应答、杀伤肿瘤细胞的强大潜力,并在癌症治疗中得到了广泛应用。然而,在结核病中的作用机制、治疗前景仍需进一步研究。为了更好地推动PD-1和PD-L1抑制剂在传染病领域的应用,作者综述了结核病中T淋巴细胞适应性免疫的特征,PD-1/PD-L1信号通路的功能及在结核病中的作用,并对阻断PD-1/PD-L1通路在结核病治疗中的最新研究进展进行了总结和讨论。旨在为免疫检查点抑制剂在感染性疾病中的应用提供参考。
中图分类号:
杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. doi: 10.19983/j.issn.2096-8493.2024141
Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research[J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. doi: 10.19983/j.issn.2096-8493.2024141
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | Sakai S, Kauffman KD, Sallin MA, et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog, 2016, 12(5): e1005667. doi:10.1371/journal.ppat.1005667. |
[3] |
Kamboj D, Gupta P, Basil MV, et al. Improved Mycobacterium tuberculosis clearance after the restoration of IFN-γ(+) TNF-α(+) CD4(+) T cells: Impact of PD-1 inhibition in active tuberculosis patients. Eur J Immunol, 2020, 50(5): 736-747. doi:10.1002/eji.201948283.
pmid: 32113187 |
[4] | Hassan SS, Akram M, King EC, et al. PD-1, PD-L1 and PD-L 2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLoS One, 2015, 10(9): e0137646. doi:10.1371/journal.pone.0137646. |
[5] | Liu Q, Ou Q, Shen L, et al. BATF Potentially Mediates Nega-tive Regulation of PD-1/PD-Ls Pathway on T Cell Functions in Mycobacterium tuberculosis Infection. Front Immunol, 2019, 10: 2430. doi:10.3389/fimmu.2019.02430. |
[6] | Shi CL, Zhang JP, Xu P, et al. Upregulation of PD-1 expression on circulating CD8+ but not CD4+ T cells is associated with tuberculosis infection in health care workers. BMC Immunol, 2021, 22(1): 39. doi:10.1186/s12865-021-00433-9. |
[7] | Moslehi J, Lichtman AH, Sharpe AH, et al. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J Clin Invest, 2021, 131(5):e145186. doi:10.1172/JCI145186. |
[8] |
Srivastava S, Ernst JD. Cell-to-cell transfer of M.tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe, 2014, 15(6): 741-752. doi:10.1016/j.chom.2014.05.007.
pmid: 24922576 |
[9] | Li L, Qiao D, Fu X, et al. Identification of M.tuberculosis-specific Th 1 cells expressing CD69 generated in vivo in pleural fluid cells from patients with tuberculous pleurisy. PLoS One, 2011, 6(8): e23700. doi:10.1371/journal.pone.0023700. |
[10] | Stephens R, Langhorne J. Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS Pathog, 2010, 6(11): e1001208. doi:10.1371/journal.ppat.1001208. |
[11] |
Jankovic D, Feng CG. CD4(+) T Cell Differentiation in Infection: Amendments to the Th1/Th2 Axiom. Front Immunol, 2015, 6: 198. doi:10.3389/fimmu.2015.00198.
pmid: 25972870 |
[12] | Parackova Z, Bloomfield M, Klocperk A, et al. Neutrophils mediate Th 17 promotion in COVID-19 patients. J Leukoc Biol, 2021, 109(1): 73-76. doi:10.1002/jlb.4covcra0820-481rrr. |
[13] | Doz E, Lombard R, Carreras F, et al. Mycobacteria-infected dendritic cells attract neutrophils that produce IL-10 and specifically shut down Th 17 CD4 T cells through their IL-10 receptor. J Immunol, 2013, 191(7): 3818-3826. doi:10.4049/jimmunol.1300527. |
[14] | Green AM, Difazio R, Flynn JL. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J Immunol, 2013, 190(1): 270-277. doi:10.4049/jimmunol.1200061. |
[15] | Yang Q, Qi F, Ye T, et al. The interaction of macrophages and CD 8 T cells in bronchoalveolar lavage fluid is associated with latent tuberculosis infection. Emerg Microbes Infect, 2023, 12(2): 2239940. doi:10.1080/22221751.2023.2239940. |
[16] |
Chowdhury A, Hayes TL, Bosinger SE, et al. Differential Impact of In Vivo CD8+ T Lymphocyte Depletion in Controller versus Progressor Simian Immunodeficiency Virus-Infected Macaques. J Virol, 2015, 89(17): 8677-8686. doi:10.1128/jvi.00869-15.
pmid: 26063417 |
[17] |
Carpenter SM, Behar M. A new vaccine for tuberculosis in rhesus macaques. Nat Med, 2018, 24(2): 124-126. doi:10.1038/nm.4488.
pmid: 29414932 |
[18] | Sharan R, Singh DK, Rengarajan J, et al. Characterizing Early T Cell Responses in Nonhuman Primate Model of Tuberculosis. Front Immunol, 2021, 12: 706723. doi:10.3389/fimmu.2021.706723. |
[19] | Bold TD, Ernst JD. CD4+ T cell-dependent IFN-γ production by CD8+ effector T cells in Mycobacterium tuberculosis infection. J Immunol, 2012, 189(5): 2530-2536. doi:10.4049/jimmunol.1200994. |
[20] | Swanson RV, Gupta A, Foreman TW, et al. Antigen-specific B cells direct T follicular-like helper cells into lymphoid follicles to mediate Mycobacterium tuberculosis control. Nat Immunol, 2023, 24(5): 855-868. doi:10.1038/s41590-023-01476-3. |
[21] | Jurado JO, Alvarez IB, Pasquinelli V, et al. Programmed death (PD) -1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol, 2008, 181(1): 116-125. doi:10.4049/jimmunol.181.1.116. |
[22] |
Reungwetwattana T, Adjei AA. Anti-PD-1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12): 2048-2050. doi:10.1016/j.jtho.2016.10.008.
pmid: 27866633 |
[23] |
Lentz RW, Colton MD, Mitra SS, et al. Innate Immune Checkpoint Inhibitors: The Next Breakthrough in Medical Oncology? Mol Cancer Ther, 2021, 20(6): 961-974. doi:10.1158/1535-7163.Mct-21-0041.
pmid: 33850005 |
[24] | Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative breast cancer. Cancer Metastasis Rev, 2021, 40(2): 537-547. doi:10.1007/s10555-021-09972-4. |
[25] | Lin PL, Rutledge T, Green AM, et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retroviruses, 2012, 28(12): 1693-1702. doi:10.1089/aid.2012.0028. |
[26] |
Kamphorst AO, Ahmed R. Manipulating the PD-1 pathway to improve immunity. Curr Opin Immunol, 2013, 25(3): 381-388. doi:10.1016/j.coi.2013.03.003.
pmid: 23582509 |
[27] | Jiang J, Cao Z, Qu J, et al. PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13. Scand J Immunol, 2020, 91(4): e12858. doi:10.1111/sji.12858. |
[28] |
Naimi A, Mohammed RN, Raji A, et al. Tumor immunothera-pies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal, 2022, 20(1): 44. doi:10.1186/s12964-022-00854-y.
pmid: 35392976 |
[29] | Shi J, Li J, Wang Q, et al. The safety and efficacy of immunotherapy with anti-programmed cell death 1 monoclonal antibody for lung cancer complicated with Mycobacterium tuberculosis infection. Transl Lung Cancer Res, 2021, 10(10): 3929-3942. doi:10.21037/tlcr-21-524. |
[30] | Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545(7655): 495-499. doi:10.1038/nature22396. |
[31] | Ahmed M, Tezera LB, Elkington PT, et al. The paradox of immune checkpoint inhibition re-activating tuberculosis. Eur Respir J, 2022, 60(5):2102512. doi:10.1183/13993003.02512-2021. |
[32] | Geraud A, Gougis P, Vozy A, et al. Clinical Pharmacology and Interplay of Immune Checkpoint Agents: A Yin-Yang Balance. Annu Rev Pharmacol Toxicol, 2021, 61: 85-112. doi:10.1146/annurev-pharmtox-022820-093805. |
[33] | Periasamy S, Dhiman R, Barnes PF, et al. Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation With Mycobacterium tuberculosis. J Infect Dis, 2011, 203(9): 1256-1263. doi:10.1093/infdis/jir011. |
[34] |
Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol, 2018, 18(2): 91-104. doi:10.1038/nri.2017.112.
pmid: 28990586 |
[35] | Mcgee MC, Zhang T, Mamazine N, et al. PD-1 and ICOS counter-regulate tissue resident regulatory T cell development and IL-10 production during flu. Front Immunol, 2022, 13: 984476. doi:10.3389/fimmu.2022.984476. |
[36] |
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol, 2015, 15(8): 486-499. doi:10.1038/nri3862.
pmid: 26205583 |
[37] |
Okazaki T, Chikuma S, Iwai Y, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol, 2013, 14(12): 1212-1218. doi:10.1038/ni.2762.
pmid: 24240160 |
[38] |
Collier JL, Weiss SA, Pauken KE, et al. Not-so-opposite ends of the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol, 2021, 22(7): 809-819. doi:10.1038/s41590-021-00949-7.
pmid: 34140679 |
[39] | 陈珍妍, 胡志东, 范小勇. 免疫检查点阻断在逆转慢性结核病T细胞耗竭中的应用. 生命科学, 2020, 32(4): 349-358. doi:10.13376/j.cbls/2020045. |
[40] | Chen F, Qian WB, Chen ZH, et al. T cell exhaustion methyla-tion signature drives differential immune responses in glioblastoma. Discov Oncol, 2024, 15(1): 530. doi:10.1007/s12672-024-01412-3. |
[41] | Zheng Y, Wang S, Cai J, et al. The progress of immune checkpoint therapy in primary liver cancer. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188638. doi:10.1016/j.bbcan.2021.188638. |
[42] |
Khan N, Vidyarthi A, Amir M, et al. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol, 2017, 43(2): 133-141. doi:10.1080/1040841x.2016.1185603.
pmid: 27800700 |
[43] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9): 1646-1654. doi:10.1038/s41591-021-01388-5.
pmid: 34183838 |
[44] |
Nathan CF, Murray HW, Wiebe ME, et al. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med, 1983, 158(3): 670-689. doi:10.1084/jem.158.3.670.
pmid: 6411853 |
[45] | Yao S, Huang D, Chen CY, et al. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3- lymphocytes: mechanisms of CD4+ T cell immunity. J Immunol, 2014, 192(5): 2120-2132. doi:10.4049/jimmunol.1301373. |
[46] | Anand K, Sahu G, Burns E, et al. Mycobacterial infections due to PD-1 and PD-L 1 checkpoint inhibitors. ESMO Open, 2020, 5(4). doi:10.1136/esmoopen-2020-000866. |
[47] | Lázár-Molnár E, Chen B, Sweeney KA, et al. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A, 2010, 107(30): 13402-13407. doi:10.1073/pnas.1007394107. |
[48] |
Jouanguy E, Lamhamed-Cherradi S, Altare F, et al. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest, 1997, 100(11): 2658-2664. doi:10.1172/jci119810.
pmid: 9389728 |
[49] | Suarez GV, Melucci Ganzarain CDC, Vecchione MB, et al. PD-1/PD-L 1 Pathway Modulates Macrophage Susceptibility to Mycobacterium tuberculosis Specific CD8(+) T cell Induced Death. Sci Rep, 2019, 9(1): 187. doi:10.1038/s41598-018-36403-2. |
[50] | Russell SL, Lamprechi DA, Mandizvo T, et al. Compromised Metabolic Reprogramming Is an Early Indicator of CD8(+) T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Rep, 2019, 29(11): 3564-3579.e5. doi:10.1016/j.celrep.2019.11.034. |
[51] |
Grotzke JE, Lewinsohn DM. Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect, 2005, 7(4): 776-788. doi:10.1016/j.micinf.2005.03.001.
pmid: 15823514 |
[52] |
Bengsch B, Johnson AL, Kurachi M, et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion. Immunity, 2016, 45(2): 358-373. doi:10.1016/j.immuni.2016.07.008.
pmid: 27496729 |
[53] | Xiong K, Sun W, He Y, et al. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review. Transl Lung Cancer Res, 2021, 10(10): 4012-4026. doi:10.21037/tlcr-21-465. |
[54] | Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475). doi:10.1126/scitranslmed.aat2702. |
[55] | Day CL, Abrahams DA, Bujun R, et al. PD-1 Expression on Mycobacterium tuberculosis-Specific CD 4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol, 2018, 9: 1995. doi:10.3389/fimmu.2018.01995. |
[56] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis, 2013, 208(4): 603-615. doi:10.1093/infdis/jit206.
pmid: 23661793 |
[57] | Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9. doi:10.7554/eLife.52668. |
[58] |
Abers MS, Lionakis MS, Kontoyiannis DP. Checkpoint Inhibition and Infectious Diseases: A Good Thing? Trends Mol Med, 2019, 25(12): 1080-1093. doi:10.1016/j.molmed.2019.08.004.
pmid: 31494023 |
[59] |
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol, 2017, 47(5): 765-779. doi:10.1002/eji.201646875.
pmid: 28393361 |
[60] | Stephens-Victor E, Sharma VK, Das M, et al. IL-1β, But Not Programed Death-1 and Programed Death Ligand Pathway, Is Critical for the Human Th17 Response to Mycobacterium tuberculosis. Front Immunol, 2016, 7: 465. doi:10.3389/fimmu.2016.00465. |
[61] | Pan SW, Shu CC, Huang JR, et al. PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. Int J Mol Sci, 2022, 23(3):1619. doi:10.3390/ijms23031619. |
[62] | Bickett TE, Karam SD. Tuberculosis-Cancer Parallels in Immune Response Regulation. Int J Mol Sci, 2020, 21(17):6136. doi:10.3390/ijms21176136. |
[63] |
Moguche AO, Musvosvi M, Penn-Nicholson A, et al. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis. Cell Host Microbe, 2017, 21(6): 695-706.e5. doi:10.1016/j.chom.2017.05.012.
pmid: 28618268 |
[64] |
Shen L, Gao Y, Liu Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4(+) T-cell functions and phagocytosis of macrophages in active tuberculosis. Sci Rep, 2016, 6: 38362. doi:10.1038/srep38362.
pmid: 27924827 |
[65] | Cao S, Li J, Lu J, et al. Mycobacterium tuberculosis antigens repress Th 1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis, 2019, 10(2): 44. doi:10.1038/s41419-018-1237-y. |
[66] |
Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma. Lancet, 2021, 398(10304): 1002-1014. doi:10.1016/s0140-6736(21)01206-x.
pmid: 34509219 |
[67] |
Salas-benito D, Pérez-gracia JL, Ponz-sarvisé M, et al. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov, 2021, 11(6): 1353-1367. doi:10.1158/2159-8290.Cd-20-1312.
pmid: 33712487 |
[68] |
Sundar R, Cho BC, Brahmer JR, et al. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol, 2015, 7(2): 85-96. doi:10.1177/1758834014567470.
pmid: 25755681 |
[69] |
Stroh GR, Peikert T, Escalante P. Active and latent tuberculosis infections in patients treated with immune checkpoint inhibitors in a non-endemic tuberculosis area. Cancer Immunol Immunother, 2021, 70(11): 3105-3111. doi:10.1007/s00262-021-02905-8.
pmid: 33770211 |
[70] | 金文婷, 倪佳依, 胡必杰, 等. 免疫检查点抑制剂相关结核病:1例报道及文献分析. 复旦学报(医学版), 2024, 51(2): 272-276 doi:10.3969/j.issn.1672-8467.2024.02.020. |
[71] | 任坦坦, 詹森林, 王玉香, 等. PD-1/PD-L1抑制剂相关活动性结核病的临床特点及文献复习. 结核与肺部疾病杂志, 2023, 4(1): 27-32. doi:10.19983/j.issn.2096-8493.20220161. |
[72] |
Barber DL, Mayer-barber KD, FENG CG, et al. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol, 2011, 186(3): 1598-1607. doi:10.4049/jimmunol.1003304.
pmid: 21172867 |
[73] | Tousif S, Singh Y, Prasad DV, et al. T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS One, 2011, 6(5): e19864. doi:10.1371/journal.pone.0019864. |
[74] |
Fujita K, Terashima T, Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12): 2238-2240. doi:10.1016/j.jtho.2016.07.006.
pmid: 27423391 |
[75] | Lee JJ, Chan A, Tang T. Tuberculosis reactivation in a patient receiving anti-programmed death-1 (PD-1) inhibitor for relapsed Hodgkin’s lymphoma. Acta Oncol, 2016, 55(4): 519-520. doi:10.3109/0284186x.2015.1125017. |
[76] | Chu YC, Fang KC, Chen HC, et al. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol, 2017, 12(8): e111-e114. doi:10.1016/j.jtho.2017.03.012. |
[77] | Shen BJ, Lin HH. Time-dependent association between cancer and risk of tuberculosis: A population-based cohort study. Int J Infect Dis, 2021, 108: 340-346. doi:10.1016/j.ijid.2021.05.037. |
[78] | Picchi H, Mateus C, Chouaid C, et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. Clin Microbiol Infect, 2018, 24(3): 216-218. doi:10.1016/j.cmi.2017.12.003. |
[79] |
Anastasopoulou A, Ziogas DC, Samarkos M, et al. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J Immunother Cancer, 2019, 7(1): 239. doi:10.1186/s40425-019-0717-7.
pmid: 31484550 |
[80] | Hamashima R, Uchino J, Morimoto Y, et al. Association of immune checkpoint inhibitors with respiratory infections: A review. Cancer Treat Rev, 2020, 90: 102109. doi:10.1016/j.ctrv.2020.102109. |
[81] |
Müller M, Wander S, Colebunders R, et al. Immune reconstitution inflammatory syndrome in patients starting antiretroviral therapy for HIV infection: a systematic review and meta-analysis. Lancet Infect Dis, 2010, 10(4): 251-261. doi:10.1016/s1473-3099(10)70026-8.
pmid: 20334848 |
[82] | Granier C, Dariane C, COMBE P, et al. Tim-3 Expression on Tumor-Infiltrating PD-1(+)CD8(+) T Cells Correlates with Poor Clinical Outcome in Renal Cell Carcinoma. Cancer Res, 2017, 77(5): 1075-1082. doi:10.1158/0008-5472.Can-16-0274. |
[83] | Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011, 117(17): 4501-4510. doi:10.1182/blood-2010-10-310425. |
[84] |
Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol, 2009, 10(1): 29-37. doi:10.1038/ni.1679.
pmid: 19043418 |
[1] | 陈禹, 李晓睿, 王妙然, 张雨颀, 刘畅, 王照华, 石杰, 樊丽超, 尹智华, 谢建平. 金属离子在结核病中的作用研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 102-112. |
[2] | 徐雁南, 方梓昊, 赵文丽, 郑佳雄, 刘苏洋, 林健雄, 纪丽微, 常巧呈. 中国异烟肼耐药结核分枝杆菌基因突变特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 14-21. |
[3] | 万莹, 庞学文, 张帆. 2010—2020年天津市结核病防治健康促进工作效果评价[J]. 结核与肺部疾病杂志, 2025, 6(1): 22-29. |
[4] | 赵永年, 张丽杰, 王童敏. 2014—2023年新疆生产建设兵团肺结核报告发病流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 30-34. |
[5] | 郑建莉, 吴语媚, 张仕利, 杜恣闲, 李土荣, 陈石生, 林文革. 福建省龙岩市结核病重点高危人群主动筛查成本效果分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 35-39. |
[6] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[7] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[8] | 阎庆虎, 薛峰, 于泳, 秦毅, 阎庆梅, 崔嘉. 超声引导下微波消融技术在局限性结核病变治疗中的价值分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 55-60. |
[9] | 陈静, 秦娅莉, 王明栋, 杨儒斌, 王倩, 彭燕清, 邱继瑶, 张晓, 周昕艾. QuantiFERON-TB Gold Plus检测活动性肺结核的效能分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 61-67. |
[10] | 顾金花, 张盼盼. 三种结核分枝杆菌检测方法在某综合医院的应用价值评估[J]. 结核与肺部疾病杂志, 2025, 6(1): 68-72. |
[11] | 闫文华, 陈文君. 数智化健康教育在菌阳肺结核患者陪护者预防管理中的价值[J]. 结核与肺部疾病杂志, 2025, 6(1): 73-78. |
[12] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[13] | 张莹, 郭春辉. 结核性气管支气管狭窄的治疗研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 87-93. |
[14] | 欧庆芬. 非结核分枝杆菌肺病的CT诊断及鉴别诊断[J]. 结核与肺部疾病杂志, 2024, 5(S): 13-14. |
[15] | 吴朝红. 女性生殖器结核不孕患者腹腔镜检查特点及临床疗效评估价值[J]. 结核与肺部疾病杂志, 2024, 5(S): 35-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||