结核与肺部疾病杂志 ›› 2025, Vol. 6 ›› Issue (1): 102-112.doi: 10.19983/j.issn.2096-8493.20250006
陈禹1,6, 李晓睿2, 王妙然3, 张雨颀4, 刘畅5, 王照华3, 石杰3, 樊丽超1, 尹智华6(), 谢建平7(
)
收稿日期:
2024-12-30
出版日期:
2025-02-20
发布日期:
2025-02-20
通信作者:
尹智华,Email: 作者简介:
注 李晓睿和陈禹对本研究有同等贡献,为并列第一作者
基金资助:
Chen Yu1,6, Li Xiaorui2, Wang Miaoran3, Zhang Yuqi4, Liu Chang5, Wang Zhaohua3, Shi Jie3, Fan Lichao1, Yin Zhihua6(), Xie Jianping7(
)
Received:
2024-12-30
Online:
2025-02-20
Published:
2025-02-20
Contact:
Yin Zhihua, Email: Supported by:
摘要:
结核分枝杆菌感染引发的结核病仍是全球公共卫生的严峻挑战。过渡金属能够稳定酶活性位点上的底物或反应中间体,广泛参与酶的催化反应过程。细菌与宿主细胞都需精确调节这些金属元素的水平,以满足生理需求并避免潜在的毒性。近年来,越来越多的研究揭示了微生物直接金属中毒的新机制,这些机制被认为是宿主免疫系统的重要组成部分,用于限制病原体的生存。宿主细胞能够通过调节胞内金属离子浓度,如锌、铜、铁等,作为一种先天免疫机制来抑制胞内病原菌的生长。在应对这些挑战的过程中,结核分枝杆菌则具备复杂的金属解毒系统。通过金属泵、螯合剂和抗氧化酶,结核分枝杆菌能够在宿主施加的金属压力下维持金属平衡,逃避宿主的免疫攻击。这些解毒机制对于病原菌的存活和持续感染至关重要。作者对宿主细胞在应对结核分枝杆菌感染过程中的金属离子代谢重编程进行了系统性探讨,深入分析了宿主细胞对不同金属离子的调控机制及其在抗微生物感染中的作用,揭示了金属离子代谢的动态变化和在感染防御中的重要性。理解这些代谢过程不仅有助于揭示结核病的发病机制,为结核病的防控与诊疗提示新的研究方向,也为开发新型抗结核治疗策略提供重要的理论基础。
中图分类号:
陈禹, 李晓睿, 王妙然, 张雨颀, 刘畅, 王照华, 石杰, 樊丽超, 尹智华, 谢建平. 金属离子在结核病中的作用研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 102-112. doi: 10.19983/j.issn.2096-8493.20250006
Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis[J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. doi: 10.19983/j.issn.2096-8493.20250006
[1] | Mirzayev F, Viney K, Linh NN, et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J, 2021, 57(6): 2003300. doi:10.1183/13993003.03300-2020. |
[2] | Lee SH. Tuberculosis Infection and Latent Tuberculosis. Tuberc Respir Dis (Seoul), 2016, 79(4): 201-206. doi:10.4046/trd.2016.79.4.201. |
[3] | Ai JW, Ruan QL, Liu QH, et al. Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg Microbes Infect, 2016, 5(2):e10. doi:10.1038/emi.2016.10. |
[4] |
Barberis I, Bragazzi NL, Galluzzo L, et al. The history of tuberculosis: from the first historical records to the isolation of Koch’s bacillus. J Prev Med Hyg, 2017, 58 (1): E9-E12.
pmid: 28515626 |
[5] |
Lakhtakia R. The Legacy of Robert Koch: Surmise, search, substantiate. Sultan Qaboos Univ Med J, 2014, 14(1): e37-41. doi:10.12816/0003334.
pmid: 24516751 |
[6] |
Plüddemann, Annette, Mukhopadhyay, et al. Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunol Rev, 2011, 240(1): 11-24. doi:10.1111/j.1600-065X.2010.00989.x.
pmid: 21349083 |
[7] |
White C, Lee J, Kambe T, et al. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem, 2009, 284(49): 33949-33956. doi:10.1074/jbc.M109.070201.
pmid: 19808669 |
[8] | Ward SK, Abomoelak B, Hoye EA, et al. CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol, 2010, 77(5): 1096-110. doi:10.1111/j.1365-2958.2010.07273.x. |
[9] |
Adhikary, Arun Kumar, Banik, et al. Molecular Characterization of Human Adenovirus Type 8 (HAdV-8), including a Novel Genome Type Detected in Japan. Japanese Journal Of Infectious Diseases, 2011, 64 (6): 493-498.
pmid: 22116328 |
[10] |
Russell DG. The galvanizing of Mycobacterium tuberculosis: an antimicrobial mechanism. Cell Host Microbe, 2011, 10 (3): 181-183. doi:10.1016/j.chom.2011.08.008.
pmid: 21925106 |
[11] | Wolschendorf F, Ackart D, Shrestha TB, et al. Copper resis-tance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2011, 108 (4): 1621-1626. doi:10.1073/pnas.1009261108. |
[12] |
Shafeeq S, Yesilkaya H, Kloosterman TG, et al. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol, 2011, 81 (5): 1255-1270. doi:10.1111/j.1365-2958.2011.07758.x.
pmid: 21736642 |
[13] | Fortier A, Min-Oo G, Forbes J, et al. Single gene effects in mouse models of host: pathogen interactions. J Leukoc Biol, 2005, 77 (6): 868-877. doi:10.1189/jlb.1004616. |
[14] | Chao A, Sieminski PJ, Owens CP, et al. Iron Acquisition in Mycobacterium tuberculosis. Chem Rev, 2018, 119 (2): 1193-1220. doi:10.1021/acs.chemrev.8b00285. |
[15] |
Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol Rev, 2003, 27 (2-3): 215-237. doi:10.1016/S0168-6445(03)00055-X.
pmid: 12829269 |
[16] |
Cornelis P, Wei Q, Andrews SC, et al. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics, 2011, 3(6):540-549. doi:10.1039/c1mt00022e.
pmid: 21566833 |
[17] | Arnold FM, Weber MS, Gonda I, et al. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature, 2020, 580 (7803): 413-417. doi:10.1038/s41586-020-2136-9. |
[18] |
Kurthkoti K, Tare P, Paitchowdhury R, et al. The mycobacterial iron-dependent regulator IdeR induces ferritin (bfrB) by alleviating Lsr2 repression. Mol Microbiol, 2015, 98 (5): 864-877. doi:10.1111/mmi.13166.
pmid: 26268801 |
[19] | Nambu S, Matsui T, Goulding CW, et al. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J Biol Chem, 2013, 288 (14): 10101-10109. doi:10.1074/jbc.M112.448399. |
[20] |
Choudhury M, Koduru TN, Kumar N, et al. Iron uptake and transport by the carboxymycobactin-mycobactin siderophore machinery of Mycobacterium tuberculosis is dependent on the iron-regulated protein HupB. Biometals, 2021, 34 (3): 511-528. doi:10.1007/s10534-021-00292-2.
pmid: 33609202 |
[21] | Maret W. Zinc in Cellular Regulation: The Nature and Significance of “Zinc Signals”. Int J Mol Sci, 2017, 18 (11):2285. doi:10.3390/ijms18112285. |
[22] |
Andreini C, Banci L, Bertini I, et al. Counting the zinc-proteins encoded in the human genome. J Proteome Res, 2006, 5 (1): 196-201. doi:10.1021/pr050361j.
pmid: 16396512 |
[23] |
Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr, 2013, 4 (1): 82-91. doi:10.3945/an.112.003038.
pmid: 23319127 |
[24] |
Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Advances In Nutrition 2013, 4 (2): 176-190. doi:10.3945/an.112.003210.
pmid: 23493534 |
[25] | Wessels I, Rolles B, Slusarenko AJ, et al. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br J Nutr, 2021, 127 (2): 214-232. doi:10.1017/S0007114521000738. |
[26] | Boudehen YM, Faucher M, Maréchal X, et al. Mycobacterial resistance to zinc poisoning requires assembly of P-ATPase-containing membrane metal efflux platforms. Nat Commun, 2022, 13 (1): 4731. doi:10.1038/s41467-022-32085-7. |
[27] |
Colvin RA, Holmes WR, Fontaine CP, et al. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics, 2010, 2 (5): 306-317. doi:10.1039/b926662c.
pmid: 21069178 |
[28] |
Wirth JJ, Fraker PJ, Kierszenbaum F. Changes in the levels of marker expression by mononuclear phagocytes in zinc-deficient mice. J Nutr, 1984, 114 (10): 1826-1833. doi:10.1093/jn/114.10.1826.
pmid: 6481478 |
[29] | Ercan MT, Bor NM. Phagocytosis by macrophages in zinc-deficient rats. International journal of radiation applications and instrumentation. Int J Rad Appl Instrum B, 1991, 18 (7): 765-768. doi:10.1016/0883-2897(91)90015-d. |
[30] |
Fischer Walker C, Black RE. Zinc and the risk for infectious disease. Annu Rev Nutr, 2004, 24:255-275. doi:10.1146/annurev.nutr.23.011702.073054.
pmid: 15189121 |
[31] |
Darnton-Hill I, Coyne ET. Feast and famine: socioeconomic disparities in global nutrition and health. Public Health Nutr, 1998, 1 (1): 23-31. doi:10.1079/phn19980005.
pmid: 10555528 |
[32] | Black RE. Zinc deficiency, infectious disease and mortality in the developing world. J Nutr, 2003, 133 (5 Suppl 1):1485S-1489S. doi:10.1093/jn/133.5.1485S. |
[33] |
Coles CL, Sherchand JB, Khatry SK, et al. Zinc modifies the association between nasopharyngeal Streptococcus pneumoniae carriage and risk of acute lower respiratory infection among young children in rural Nepal. J Nutr, 2008, 138 (12): 2462-2467. doi:10.3945/jn.108.095422.
pmid: 19022973 |
[34] |
Weston WL, Huff JC, Humbert JR, Zinc Correction of Defective Chemotaxis in Acrodermatitis Enteropathica. Arch Dermatol, 1977, 113 (4): 422.
pmid: 848970 |
[35] |
Briggs WA, Pedersen MM, Mahajan SK, et al. Lymphocyte and granulocyte function in zinc-treated and zinc-deficient hemodialysis patients. Kidney Int, 1982, 21 (6): 827-832. doi:10.1038/ki.1982.106.
pmid: 7132052 |
[36] |
Wirth JJ, Fraker PJ, Kierszenbaum F. Zinc requirement for macrophage function: effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology, 1989, 68 (1): 114-119.
pmid: 2680908 |
[37] |
James SJ, Swendseid M, Makinodan T. Macrophage-mediated depression of T-cell proliferation in zinc-deficient mice. J Nutr, 1987, 117 (11): 1982-1988. doi:10.1093/jn/117.11.1982.
pmid: 3500292 |
[38] |
Karl L, Chvapil M, Zukoski CF. Effect of zinc on the viability and phagocytic capacity of peritoneal macrophages. Proc Soc Exp Biol Med, 1973, 142 (4): 1123-1127. doi:10.3181/00379727-142-37190.
pmid: 4348581 |
[39] |
Maret W. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals, 2011, 24 (3): 411-418. doi:10.1007/s10534-010-9406-1.
pmid: 21221719 |
[40] | Maret W, Jacob C, Vallee BL, et al. Inhibitory sites in enzymes: zinc removal and reactivation by thionein. Proc Natl Acad Sci U S A, 1999, 96 (5): 1936-1940. doi:10.1073/pnas.96.5.1936. |
[41] | Dow A, Sule P, O’Donnell TJ, et al. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog, 2021, 17 (5): e1009570. doi:10.1371/journal.ppat.1009570. |
[42] | Goethe E, Laarmann K, Lührs J, et al. Critical Role of Zur and SmtB in Zinc Homeostasis of Mycobacterium smegmatis. mSystems, 2020, 5 (2): e00880-19. doi:10.1128/mSystems.00880-19. |
[43] | Mikhaylina A, Ksibe AZ, Scanlan DJ, et al. Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans, 2018, 46 (4): 983-1001. doi:10.1042/BST20170228. |
[44] | Mehdiratta K, Singh S, Sharma S, et al. Kupyaphores are zinc homeostatic metallophores required for colonization of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2022, 119(8):e2110293119. doi:10.1073/pnas.2110293119. |
[45] |
Padilla-Benavides T, Long JE, Raimunda D, et al. A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria. J Biol Chem, 2013, 288(16):11334-11347. doi:10.1074/jbc.M112.448175.
pmid: 23482562 |
[46] |
Zidar BL, Shadduck RK, Zeigler Z, et al. Observations on the anemia and neutropenia of human copper deficiency. Am J Hematol, 1977, 3:177-185. doi:10.1002/ajh.2830030209.
pmid: 304669 |
[47] |
Xin Z, Waterman DF, Hemken RW, et al. Effects of copper status on neutrophil function, superoxide dismutase, and copper distribution in steers. J Dairy Sci, 1991, 74 (9): 3078-3085. doi:10.3168/jds.S0022-0302(91)78493-2.
pmid: 1779061 |
[48] |
Jones DG, Suttle NF. The effect of copper deficiency on the resistance of mice to infection with Pasteurella haemolytica. J Comp Pathol, 1983, 93 (1): 143-149. doi:10.1016/0021-9975(83)90052-x.
pmid: 6841690 |
[49] |
Newberne PM, Hunt CE, Young VR. The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhilmurium infection. Br J Exp Pathol, 1968, 49 (5): 448-457.
pmid: 4882436 |
[50] |
Crocker A, Lee C, Aboko-Cole G, et al. Interaction of nutrition and infection: effect of copper deficiency on resistance to Trypanosoma lewisi. J Natl Med Assoc, 1992, 84 (8): 697-706.
pmid: 1507261 |
[51] | Subashchandrabose, Sargurunathan, Hazen, et al. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A, 2014, 111 (51): 18327-18332. doi:10.1073/pnas.1415959112. |
[52] |
Hodgkinson, Victoria, Petris, et al. Copper homeostasis at the host-pathogen interface. J Biol Chem, 2012, 287 (17): 13549-13555. doi:10.1074/jbc.R111.316406.
pmid: 22389498 |
[53] |
Rae TD, Schmidt PJ, Pufahl RA, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284 (5415): 805-808. doi:10.1126/science.284.5415.805.
pmid: 10221913 |
[54] | Djoko, Karrera Y, Franiek, et al. Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect Immun, 2011, 80 (3): 1065-1071. doi:10.1128/IAI.06163-11. |
[55] |
Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem, 2005, 12 (10): 1161-1208. doi:10.2174/0929867053764635.
pmid: 15892631 |
[56] |
Piddington DL, Fang FC, Laessig T, et al. Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infect Immun, 2001, 69 (8): 4980-4987. doi:10.1128/IAI.69.8.4980-4987.2001.
pmid: 11447176 |
[57] |
Wu CH, Tsai-Wu JJ, Huang YT, et al. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett, 1998, 439 (1-2): 192-196. doi:10.1016/s0014-5793(98)01373-8.
pmid: 9849904 |
[58] |
Nies, Dietrich H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev, 2003, 27 (2-3): 313-339. doi:10.1016/S0168-6445(03)00048-2.
pmid: 12829273 |
[59] | Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393 (6685): 537-544. doi:10.1038/31159. |
[60] |
Kehres, David G, Maguire, et al. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev, 2003, 27 (2-3): 263-290. doi:10.1016/S0168-6445(03)00052-4.
pmid: 12829271 |
[61] |
Zhang Y, Lathigra R, Garbe T, et al. Genetic analysis of superoxide dismutase, the 23 kilodalton antigen of Mycobacterium tuberculosis. Mol Microbiol, 1991, 5 (2): 381-391. doi:10.1111/j.1365-2958.1991.tb02120.x.
pmid: 1904126 |
[62] | Solomons, Noel W. Malnutrition and infection: an update. Br J Nutr, 2007, 98 Suppl 1 S5-S10. doi:10.1017/S0007114507832879. |
[63] |
Vidal S, Tremblay ML, Govoni G, et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med, 1995, 182 (3): 655-666. doi:10.1084/jem.182.3.655.
pmid: 7650477 |
[64] | Kehl-Fie, Thomas E, Skaar, et al. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol, 2009, 14 (2): 218-224. doi:10.1016/j.cbpa.2009.11.008. |
[65] | Appelberg Rui. Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol, 2006, 79 (6): 1117-1128. doi:10.1189/jlb.0206079. |
[66] |
Nairz M, Fritsche G, Brunner P, et al. Interferon-gamma limits the availability of iron for intramacrophage Salmonella typhimurium. Eur J Immunol, 2008, 38 (7): 1923-1936. doi:10.1002/eji.200738056.
pmid: 18581323 |
[67] | Quadri LE, Sello J, Keating TA, et al. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol, 1998, 5 (11): 631-645. doi:10.1016/s1074-5521(98)90291-5. |
[68] |
Gobin J, Horwitz MA. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M.tuberculosis cell wall. J Exp Med, 1996, 183 (4): 1527-1532. doi:10.1084/jem.183.4.1527.
pmid: 8666910 |
[69] | De Voss JJ, Rutter K, Schroeder BG, et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A, 2000, 97 (3): 1252-1257. doi:10.1073/pnas.97.3.1252. |
[70] |
Rodriguez GM, Smith I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J Bacteriol, 2006, 188 (2): 424-430. doi:10.1128/JB.188.2.424-430.2006.
pmid: 16385031 |
[71] | Siegrist MS, Unnikrishnan M, McConnell MJ, et al. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci U S A, 2009, 106 (44): 18792-18797. doi:10.1073/pnas.0900589106. |
[72] |
Mazumder, Barsanjit, Sampath, et al. Regulation of macrophage ceruloplasmin gene expression: one paradigm of 3'-UTR-mediated translational control. Mol Cells, 2005, 20 (2): 167-172.
pmid: 16267389 |
[73] |
Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem, 2000, 275 (26): 19906-19912. doi:10.1074/jbc.M000713200.
pmid: 10747949 |
[74] |
De Domenico I, Ward DM, di Patti MC, et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J, 2007, 26 (12): 2823-2831. doi:10.1038/sj.emboj.7601735.
pmid: 17541408 |
[75] |
Fuqua BK, Lu Y, Frazer DM, et al. Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cell Mol Gastroenterol Hepatol, 2018, 6 (4): 405-427. doi:10.1016/j.jcmgh.2018.06.006.
pmid: 30182051 |
[76] | Soleilhavoup C, Riou C, Tsikis G, et al. Proteomes of the Female Genital Tract During the Oestrous Cycle. Mol Cell Proteomics, 2015, 15 (1): 93-108. doi:10.1074/mcp.M115.052332. |
[77] | Sokolov AV, Pulina MO, Zakharova ET, et al. Identification and isolation from breast milk of ceruloplasmin-lactoferrin complex. Biochemistry (Mosc), 2006, 71 (2): 160-166. doi:10.1134/s0006297906020076. |
[78] | Sabatucci A, Vachette P, Vasilyev VB, et al. Structural chara-cterization of the ceruloplasmin: lactoferrin complex in solution. J Mol Biol, 2007, 371 (4): 1038-1046. doi:10.1016/j.jmb.2007.05.089. |
[79] |
MacGillivray RT, Mendez E, Shewale JG, et al. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem, 1983, 258 (6): 3543-3553.
pmid: 6833213 |
[80] | Hall DR, Hadden JM, Leonard GA, et al. The crystal and molecular structures of diferric porcine and rabbit serum transferrins at resolutions of 2.15 and 2.60 A, respectively. Acta Crystallogr D Biol Crystallogr, 2001, 58 (Pt 1): 70-80. doi:10.1107/s0907444901017309. |
[81] |
Wally J, Halbrooks PJ, Vonrhein C, et al. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem, 2006, 281 (34): 24934-24944. doi:10.1074/jbc.M604592200.
pmid: 16793765 |
[82] | Kawabata, Hiroshi. Transferrin and transferrin receptors update. Free Radic Biol Med, 2018, 133:46-54. doi:10.1016/j.freeradbiomed.2018.06.037. |
[83] |
Messori L, Kratz F. Transferrin: from inorganic biochemistry to medicine. Met Based Drugs, 1994, 1 (2-3): 161-167. doi:10.1155/MBD.1994.161.
pmid: 18476227 |
[84] | Harris ZL, Takahashi Y, Miyajima H, et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A, 1995, 92 (7): 2539-2543. doi:10.1073/pnas.92.7.2539. |
[85] |
Yoshida K, Furihata, et al. A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans. Nat Genet, 1995, 9 (3): 267-272. doi:10.1038/ng0395-267.
pmid: 7539672 |
[86] | Sakajiri T, Nakatsuji M, Teraoka Y, et al. Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(Ⅲ) ions. Metallomics, 2021, 13(12):mfab065. doi:10.1093/mtomcs/mfab065. |
[87] | Conforti A, Franco L, Milanino R, et al. Copper metabolism during acute inflammation: studies on liver and serum copper concentrations in normal and inflamed rats. Br J Pharmacol, 1983, 79(1):45-52. doi:10.1111/j.1476-5381.1983.tb10493.x. |
[88] | Conforti A, Franco L, Milanino R, et al. Copper and ceruloplasmin (Cp) concentrations during the acute inflammatory process in the rat. Agents Actions, 1982, 12 (3): 303-307. doi:10.1007/BF01965394. |
[89] | Lutsenko S, Barnes NL, Bartee MY, et al. Function and regu-lation of human copper-transporting ATPases. Physiol Rev, 2007, 87 (3): 1011-1046. doi:10.1152/physrev.00004.2006. |
[90] |
Brandtzaeg P, Dale I, Fagerhol MK. Distribution of a formalin-resistant myelomonocytic antigen (L1) in human tissues. Ⅱ. Normal and aberrant occurrence in various epithelia. Am J Clin Pathol, 1987, 87 (6): 700-707. doi:10.1093/ajcp/87.6.700.
pmid: 3296737 |
[91] |
Dale I, Brandtzaeg P, Fagerhol MK, et al. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes. Immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am J Clin Pathol, 1985, 84 (1): 24-34. doi:10.1093/ajcp/84.1.24.
pmid: 2409791 |
[92] | Johne B, Fagerhol MK, Lyberg T, et al. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol Pathol, 1997, 50 (3): 113-123. doi:10.1136/mp.50.3.113. |
[93] | Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009, 5 (10): e1000639. doi:10.1371/journal.ppat.1000639. |
[94] |
Brini M, Ottolini D, Calì T, et al. Calcium in health and disease. Met Ions Life Sci, 2013, 13:81-137. doi:10.1007/978-94-007-7500-8_4.
pmid: 24470090 |
[95] |
Brophy MB, Hayden JA, Nolan EM. Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin. J Am Chem Soc, 2012, 134 (43): 18089-18100. doi:10.1021/ja307974e.
pmid: 23082970 |
[96] |
Corbin BD, Seeley EH, Raab A, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science, 2008, 319 (5865): 962-965. doi:10.1126/science.1152449.
pmid: 18276893 |
[97] |
Nakashige, Toshiki G, Stephan, et al. The Hexahistidine Motif of Host-Defense Protein Human Calprotectin Contri-butes to Zinc Withholding and Its Functional Versatility. J Am Chem Soc, 2016, 138 (37): 12243-12251. doi:10.1021/jacs.6b06845.
pmid: 27541598 |
[98] |
Nakashige, Toshiki G, Zhang, et al. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol, 2015, 11 (10): 765-771. doi:10.1038/nchembio.1891.
pmid: 26302479 |
[99] | Zaia AA, Sappington KJ, Nisapakultorn K, et al. Subversion of antimicrobial calprotectin (S100A8/S100A9 complex) in the cytoplasm of TR146 epithelial cells after invasion by Listeria monocytogenes. Mucosal Immunol, 2008, 2 (1): 43-53. doi:10.1038/mi.2008.63. |
[100] |
Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med, 2013, 13 (1): 24-57.
pmid: 22834835 |
[101] | Liu T, Ramesh A, Ma Z, et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol, 2006, 3 (1): 60-68. doi:10.1038/nchembio844. |
[102] | Tailleux, Ludovic, Waddell, et al. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PloS One, 2008, 3 (1): e1403. doi:10.1371/journal.pone.0001403. |
[103] | Kühlbrandt, Werner. Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol, 2004, 5 (4): 282-295. doi:10.1038/nrm1354. |
[104] |
Argüello JM, Eren E, González-Guerrero M. The structure and function of heavy metal transport P1B-ATPases. Biometals, 2007, 20 (3-4): 233-248. doi:10.1007/s10534-006-9055-6.
pmid: 17219055 |
[105] |
Sepehri Z, Arefi D, Mirzaei N, et al. Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol, 2018, 50:161-166. doi:10.1016/j.jtemb.2018.06.024.
pmid: 30262275 |
[106] | Buglino JA, Sankhe GD, Lazar N, et al. Integrated sensing of host stresses by inhibition of a cytoplasmic two-component system controls M.tuberculosis acute lung infection. Elife, 2021, 10. doi:10.7554/eLife.65351. |
[107] | Kinkar E, Kinkar A, Saleh M. The multicopper oxidase of Mycobacterium tuberculosis (MmcO) exhibits ferroxidase activity and scavenges reactive oxygen species in activated THP-1 cells. Int J Med Microbiol, 2019, 309(7):151324. doi:10.1016/j.ijmm.2019.06.004. |
[108] | 中华医学会结核病学分会重症专业委员会. 结核病营养治疗专家共识. 中华结核和呼吸杂志, 2020, 43(1): 17-26. doi:10.3760/cma.j.issn.1001-0939.2020.01.006. |
[109] | Bahi GA, Boyvin L, Méité S, et al. Assessments of serum copper and zinc concentration, and the Cu/Zn ratio determination in patients with multidrug resistant pulmonary tuberculosis (MDR-TB) in Côte d’Ivoire. BMC Infect Dis, 2017, 17 (1): 257. doi:10.1186/s12879-017-2343-7. |
[110] |
Mazumder MK, Rahim MA, Ahmed S, et al. Serum Zinc Concentrations in Patients with Pulmonary Tuberculosis. Mymensingh Med J, 2018, 27 (3): 536-543.
pmid: 30141443 |
[111] | Sepehri Z, Mirzaei N, Sargazi A, et al. Essential and toxic metals in serum of individuals with active pulmonary tuberculosis in an endemic region. J Clin Tuberc Other Mycobact Dis, 2017, 23:6:8-13. doi:10.1016/j.jctube.2017.01.001. |
[112] |
Cernat RI, Mihaescu T, Vornicu M, et al. Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis, 2011, 15 (9): 1239-1245. doi:10.5588/ijtld.10.0445.
pmid: 21943852 |
[113] | Minchella PA, Donkor S, McDermid JM, et al. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb), 2015, 95 (3): 288-293. doi:10.1016/j.tube.2015.02.042. |
[114] |
Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr, 1998, 68 (2 Suppl):447S-463 S. doi:10.1093/ajcn/68.2.447S.
pmid: 9701160 |
[115] | Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care, 2009, 12 (6): 646-652. doi:10.1097/MCO.0b013e3283312956. |
[1] | 闫亚如, 谢建平. 白细胞介素-1在巨噬细胞抗结核分枝杆菌免疫应答及代谢重编程的作用研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 511-518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||