[1] |
Besharat ZM, Trocchianesi S, Verrienti A, et al. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest, 2023, 46(12):2583-2599. doi:10.1007/s40618-023-02115-2.
pmid: 37286863
|
[2] |
Vanhie A, Caron E, Vermeersch E, et al. Circulating micro-RNAs as Non-Invasive Biomarkers in Endometriosis Diagnosis-A Systematic Review. Biomedicines, 2024, 12(4):888. doi:10.3390/biomedicines12040888.
|
[3] |
McAlpine SM, Roberts SE, Hargreaves BKV, et al. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol, 2023, 50(2):227-235. doi:10.3899/jrheum.220160.
|
[4] |
Li R, Li D, Wang H, et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther, 2022, 13(1):149. doi:10.1186/s13287-022-02823-1.
pmid: 35395782
|
[5] |
张益源, 伊正君, 付玉荣. microRNA在结核分枝杆菌抗细胞自噬作用中的研究进展. 生物化学与生物物理进展, 2019, 46(1):43-50. doi:10.16476/j.pibb.2018.0133.
|
[6] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2021, 78(4):1233-1261. doi:10.1007/s00018-020-03656-y.
pmid: 33057840
|
[7] |
Wang X, Pham A, Kang L, et al. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics, 2021, 14(1):16. doi:10.3390/pharmaceutics14010016.
|
[8] |
Huang H, Zhu J, Fan L, et al. MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int, 2019, 2019:2045915. doi:10.1155/2019/2045915.
|
[9] |
Xu P, Palmer LE, Lechauve C, et al. Regulation of gene expression by miR-144/ 451 during mouse erythropoiesis. Blood, 2019, 133(23):2518-2528. doi:10.1182/blood.2018854604.
|
[10] |
Kretov DA, Shafik AM, Cifuentes D. Assessing miR-451 Activity and Its Role in Erythropoiesis. Methods Mol Biol, 2018, 1680:179-190. doi:10.1007/978-1-4939-7339-2_12.
pmid: 29030849
|
[11] |
侯涛, 戴素红, 赵广超, 等, 储存红细胞代谢产物持续影响巨噬细胞功能的初步研究. 临床血液学杂志, 2024, 37(6):384-389. doi:10.13201/j.issn.1004-2806.2024.06.003.
|
[12] |
Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015, 264(1):220-232. doi:10.1111/imr.12268.
|
[13] |
Liu X, Zhang D, Wang H, et al. MiR-451a enhances the phagocytosis and affects both M1 and M2 polarization in macrophages. Cell Immunol, 2021, 365(7):104377. doi:10.1016/j.cellimm.2021.104377.
|
[14] |
Motamedi M, Razmkhah F, Rezakhani L, et al. Altered Expression of CD44, SIRT1, CXCR4, miR-21, miR-34a, and miR-451 Genes in MKN-45 Cell Line After Docetaxel Treatment. J Gastrointest Cancer, 2020, 51(2):520-526. doi:10.1007/s12029-019-00274-1.
pmid: 31273630
|
[15] |
刘浩然. miRNA-451a及靶基因在结核病发病机制中的作用及诊断价值的研究. 北京: 北京市结核病胸部肿瘤研究所, 2019.
|
[16] |
尚晓倩, 赵慧, 马秀敏, 等. microRNA与结核分枝杆菌感染的致病机制研究进展. 中华医院感染学杂志, 2019, 29(3):477-480. doi:10.11816/cn.ni.ni.2019-174265.
|
[17] |
Zmonarski SC, Banasik M, Madziarska K, et al. The role of toll-like receptors in multifactorial mechanisms of early and late renal allotransplant injury, with a focus on the TLR4 receptor and mononuclear cells. Adv Clin Exp Med, 2019, 28(7):981-987. doi:10.17219/acem/94139.
pmid: 30968609
|
[18] |
Ghaffarpour S, Foroutan A, Askari N, et al. SP-A and TLR4 localization in lung tissue of SM-exposed patients. Int Immunopharmacol, 2020, 80:105936. doi:10.1016/j.intimp.2019.105936.
|
[19] |
Sepehri Z, Kiani Z, Kohan F, et al. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med, 2019, 50(2):117-129. doi:10.1093/labmed/lmy047.
|
[20] |
Han L, Tieliwaerdi N, Li X. METTL3-deficiency m6A-dependently degrades MALAT1 to suppress NLRP3-mediated pyroptotic cell death and inflammation in Mycobacterium tuberculosis (H37Ra strain)-infected mouse macrophages. Tuberculosis (Edinb), 2024, 146:102502. doi:10.1016/j.tube.2024.102502.
|
[21] |
Wu S, Liu X, Chen L, et al. Polymorphisms of TLR2, TLR4 and TOLLIP and tuberculosis in two independent studies. Biosci Rep, 2020, 40(8):BSR20193141. doi:10.1042/bsr20193141.
|
[22] |
Shabariah R, Hatta M, Idris I, et al. Comparison TLR2 and TLR4 serum levels in children with pulmonary and extrapulmonary tuberculosis with and without a Bacillus Calmette-Guérin (BCG) scar. J Clin Tuberc Other Mycobact Dis, 2021, 25(4):100272. doi:10.1016/j.jctube.2021.100272.
|
[23] |
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M.tuberculosis. Clin Exp Immunol, 2020, 199(2):230-243. doi:10.1111/cei.13388.
pmid: 31631328
|
[24] |
Wei X, Yi X, Liu J, et al. Circ-phkb promotes cell apoptosis and inflammation in LPS-induced alveolar macrophages via the TLR4/MyD88/NF-kB/CCL2 axis. Respir Res, 2024, 25(1):62. doi:10.1186/s12931-024-02677-6.
|
[25] |
Roedig H, Nastase MV, Frey H, et al. Biglycan is a new high-affinity ligand for CD 14 in macrophages. Matrix Biol, 2019, 77(3):4-22. doi:10.1016/j.matbio.2018.05.006.
|
[26] |
Gugliandolo E, Fusco R, Ginestra G, et al. Involvement of TLR4 and PPAR-α Receptors in Host Response and NLRP 3 Inflammasome Activation, Against Pulmonary Infection With Pseudomonas Aeruginosa. Shock, 2019, 51(2):221-227. doi:10.1097/SHK.0000000000001137.
pmid: 29547450
|
[27] |
Chen J, Tang Z, Chen Z, et al. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord, 2023, 23(1):122. doi:10.1186/s12872-023-03124-y.
|
[28] |
Yu J, Tang L, Yang L, et al. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. Phytomedicine, 2024, 123:155123. doi:10.1016/j.phymed.2023.155123.
|
[29] |
Huang Z, Song S, Zhang D, et al. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol, 2023, 45(1):61-72. doi:10.1080/08923973.2022.2115924.
|
[30] |
Nakashima M, Ishikawa K, Fugiwara A, et al. miR-451a levels rather than human papillomavirus vaccine administration is associated with the severity of murine experimental autoimmune encephalomyelitis. Sci Rep, 2021, 11(1):9369. doi:10.1038/s41598-021-88842-z.
pmid: 33931700
|
[31] |
Pahari S, Negi S, Aqdas M, et al. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy, 2020, 16(6):1021-1043. doi:10.1080/15548627.2019.1658436.
|
[32] |
曹建, 张媛梅, 黄红梅, 等. miR-451a调控TLR4信号通路参与结核分枝杆菌感染机制的研究. 中国病原生物学杂志, 2022, 17(9):1077-1081. doi:10.13350/j.cjpb.220919.
|
[33] |
Sun X, Zhang H. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4. Cell Tissue Res, 2018, 374(3):487-495. doi:10.1007/s00441-018-2898-7.
pmid: 30069596
|
[34] |
张会强, 文政芳, 张冬杰, 等. IFN-γ及血清炎症因子水平变化与肺结核发病相关性及作用机制分析. 中华医院感染学杂志, 2019, 29(2):184-187. doi:10.11816/cn.ni.2019-174186.
|
[35] |
颜月, 李桃, 方蕾. miR-144/451在呼吸系统疾病中的研究进展. 医学综述, 2020, 26 (11):2117-2121,2127. doi:10.3969/j.issn.1006-2084.2020.11.007.
|