结核与肺部疾病杂志 ›› 2020, Vol. 1 ›› Issue (3): 195-212.doi: 10.3969/j.issn.2096-8493.2020.03.002
收稿日期:
2020-11-18
出版日期:
2020-12-30
发布日期:
2021-01-05
通信作者:
朱国峰,刘晓清
E-mail:zhugf2014@126.com;liuxqpumch@126.com
基金资助:
ZHU Guo-feng*(), LIU Xiao-qing#(
)
Received:
2020-11-18
Online:
2020-12-30
Published:
2021-01-05
Contact:
ZHU Guo-feng,LIU Xiao-qing
E-mail:zhugf2014@126.com;liuxqpumch@126.com
摘要:
结核病领域一系列关键技术的突破,特别是结核分枝杆菌基因敲除突变体文库和系统的结核病动物模型,为结核病比较免疫学的形成和发展提供了可能。而结核病比较免疫学数据的积累,将为结核病免疫机理研究和结核病新型疫苗的研发创造新的机遇。作者从技术层面,对结核病比较免疫学的数据框架方式和发展方向进行了系统的描述和讨论。
朱国峰, 刘晓清. 结核病比较免疫学时代的机遇和挑战[J]. 结核与肺部疾病杂志, 2020, 1(3): 195-212. doi: 10.3969/j.issn.2096-8493.2020.03.002
ZHU Guo-feng, LIU Xiao-qing. The new era of systematic immunology of tuberculosis[J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 195-212. doi: 10.3969/j.issn.2096-8493.2020.03.002
表1
结核病比较免疫学的数据框架及其价值意义
领域 | 数据类型 | 数据构成 | 结核病比较免 疫学数据贡献 | 价值意义 | |
---|---|---|---|---|---|
临床 | 结核病临床分类患者免疫 数据 | 临床结核病体液免疫学(B细胞) 临床结核病细胞免疫学(T细胞) | 临床应用 | 理论方面: 形成“结核病比较免疫学” | |
核心实验技术 | 结核病动物模型 | 猴子 | 猴子结核病系统免疫学 | 应用方面: | |
豚鼠 | 豚鼠结核病系统免疫学 | 结核病比较免疫学 | (1)诊断: 高敏感度免疫诊断技术 | ||
小鼠 | 小鼠结核病系统免疫学 | 核心数据框架 | (2)疫苗: 保护性免疫反应数据库 | ||
MTB基因敲除 | MTB | MTB基因敲除突变体(约4000个+野生型H37Rv) | (3)药物: 宿主免疫调控及新药物 |
[1] | Dannenberg AM Jr, Rook GAW. Pathogenesis of pulmonary tuberculosis: an interplay of tissue damaging and macrophage-activating immune responses - Dual mechanisms that control bacillary multiplication. Washington DC: American Society for Microbiology Press, 1994: 459-484. |
[2] |
Barry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009,7(12):845-855. doi: 10.1038/nrmicro2236.
doi: 10.1038/nrmicro2236 URL pmid: 19855401 |
[3] |
Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin Immunol, 2004,110(1):2-12. doi: 10.1016/s1521-6616(03)00210-9.
URL pmid: 14986673 |
[4] | World Health Organization. Issues Relating to the use of BCG in immnization programmes. A discussion Document. Geneva: World Health Organization, 1999. |
[5] | Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet, 2013,381:1021-1028. doi: 10.1016/S0140-6736(13)60177-4. |
[6] |
Meeren OVD, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018,379(17):1621-1634. doi: 10.1056/NEJMoa1803484.
URL pmid: 30280651 |
[7] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium Tuberculosis from the complete genome sequence. Nature, 1998,393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL pmid: 9634230 |
[8] | Cardona PJ. New insights on the nature of latent tuberculosis infection and its treatment. Inflamm Allergy Drug Targets, 2007,6(1):27-39. |
[9] |
Marino S, Sud D, Plessner H, et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol, 2007,3(10):1909-1924. doi: 10.1371/journal.pcbi.0030194.
doi: 10.1371/journal.pcbi.0030194 URL pmid: 17953477 |
[10] | Chakravarty SD, Zhu GF, Tsai MC, et al. Tumor Necrosis Factor Blockade in Chronic Murine Tuberculosis Enhances Granulomatous Inflammation and Disorganizes Granulomas in the Lungs. Infect Immun, 2008,76(3):916-926. doi: 10.1128/IAI.01011-07. |
[11] |
Fleischmann RD, Alland D, Eisen JA, et al. Whole-genome Comparison of Mycobacterium Tuberculosis Clinical and Laboratory Strains. J Bacteriol, 2002,184(19):5479-5490. doi: 10.1128/jb.184.19.5479-5490.2002.
doi: 10.1128/jb.184.19.5479-5490.2002 URL pmid: 12218036 |
[12] | Garnier T, Eiglmeier K, Camus JC, et al. The complete genome sequence of Mycobacterium bovis Proc. Natl Acad Sci U S A, 2003,100(13):7877-7882. doi: 10.1073/pnas.1130426100. |
[13] |
Behr MA, Wilson MA, Gill WP, et al. Comparative Genomics of BCG Vaccines by Whole-Genome DNA Microarray. Science, 1999,284(5419):1520-1523. doi: 10.1126/science.284.5419.1520.
URL pmid: 10348738 |
[14] |
Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol, 2002,20:581-620. doi: 10.1146/annurev.immunol.20.081501.125851.
URL pmid: 11861613 |
[15] |
Abel L, El-Baghdadi J, Bousfiha AA, et al. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci, 2014,369(1645):20130428. doi: 10.1098/rstb.2013.0428.
doi: 10.1098/rstb.2013.0428 URL pmid: 24821915 |
[16] |
Glass LN, Swapna G, Chavadi SS, et al. Mycobacterium tuberculosis universal stress protein Rv2623 interacts with the putative ATP binding cassette (ABC) transporter Rv1747 to regulate mycobacterial growth. PLoS Pathog, 2017,13(7):e1006515. doi: 10.1371/journal.ppat.1006515.
doi: 10.1371/journal.ppat.1006515 URL |
[17] | Dannenberg AM Jr, Collins FM. Progressive pulmonary tuberculosis is not due to increasing numbers of viable bacilli in rabbits, mice and guinea pigs, but is due to a continuous host response to mycobacterial products. Tuberculosis (Edinb), 2001,81(3):229-242. doi: 10.1054/tube.2001.0287. |
[18] |
Barclay WR, Busey WM, Dalgard DW, et al. Protection of monkeys against airborne tuberculosis by aerosol vaccination with bacillus Calmette-Guerin. Am Rev Respir Dis, 1973,107(3):351-358. doi: 10.1164/arrd.1973.107.3.351.
URL pmid: 4632221 |
[19] |
Bardarov S, Bardarov S Jr, Pavelka MS, et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M.bovis BCG and M.smegmatis. Microbiology (Reading), 2002,148(Pt 10):3007-3017. doi: 10.1099/00221287-148-10-3007.
doi: 10.1099/00221287-148-10-3007 URL |
[20] |
Bardarov S, Kriakov J, Carriere C, et al. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 1997,94(20):10961-10966. doi: 10.1073/pnas.94.20.10961.
doi: 10.1073/pnas.94.20.10961 URL pmid: 9380742 |
[21] |
Tufariello JM, Jacobs WR Jr, Chan J. Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun, 2004,72(1):515-526. doi: 10.1128/iai.72.1.515-526.2004.
URL pmid: 14688133 |
[22] |
Converse PJ, Dannenberg AM Jr, Estep JE, et al. Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun, 1996,64(11):4776-4787. doi: 10.1128/IAI.64.11.4776-4787.
doi: 10.1128/IAI.64.11.4776-4787.1996 URL pmid: 8890239 |
[23] |
Capuano 3rd SV, Croix DA, Pawar S, et al. Experimental Mycobacterium Tuberculosis Infection of Cynomolgus Macaques Closely Resembles the Various Manifestations of Human M.Tuberculosis Infection. Infect Immun, 2003,71(10):5831-5844. doi: 10.1128/iai.71.10.5831 -5844.2003.
doi: 10.1128/iai.71.10.5831-5844.2003 URL pmid: 14500505 |
[24] | Orme IM. A mouse model of the recrudescence of latent tuberculosis in the elderly. Am Rev Respir Dis, 1988,137(3):716-718. doi: 10.1164/ajrccm/137.3.716. |
[25] |
Rhoades ER, Frank AA, Orme IM. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber Lung Dis, 1997,78(1):57-66. doi: 10.1016/s0962-8479(97)90016-2.
doi: 10.1016/s0962-8479(97)90016-2 URL pmid: 9666963 |
[26] |
Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med, 2001,345(15):1098-1104. doi: 10.1056/NEJMoa011110.
doi: 10.1056/NEJMoa011110 URL pmid: 11596589 |
[27] |
Marino S, Sud D, Plessner H, et al. Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol, 2007,3(10):1909-1924. doi: 10.1371/journal.pcbi.0030194.
doi: 10.1371/journal.pcbi.0030194 URL pmid: 17953477 |
[28] |
Algood HM, Lin PL, Yankura D, et al. TNF influences chemokine expression of macrophages in vitro and that of CD11b+ cells in vivo during Mycobacterium tuberculosis infection. J Immunol, 2004,172(11):6846-6857. doi: 10.4049/jimmunol.172.11.6846.
doi: 10.4049/jimmunol.172.11.6846 URL pmid: 15153503 |
[29] |
Tsai MC, Chakravarty S, Zhu GF, et al. Characterization of the Tuberculous Granuloma in Murine and Human Lungs: Cellular Composition and Relative Tissue Oxygen Tension. Cell Microbiol, 2006,8(2):218-232. doi: 10.1111/j.1462-5822.2005.00612.x.
doi: 10.1111/j.1462-5822.2005.00612.x URL pmid: 16441433 |
[30] |
Achkar JM, Chan J, Casadevall A. B cells and Antibodies in the Defense against Mycobacterium tuberculosis infection. Immunol Rev, 2015,264(1):167-181. doi: 10.1111/imr.12276.
doi: 10.1111/imr.12276 URL pmid: 25703559 |
[31] |
Davies DH, Liang XW, Hernandez JE, et al. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A, 2005,102(3):547-552. doi: 10.1073/pnas.0408782102.
doi: 10.1073/pnas.0408782102 URL pmid: 15647345 |
[32] |
Kunnath-Velayudhana S, Salamonb H, Wanga HY, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A, 2010,107(33):14703-14708. doi: 10.1073/pnas.1009080107.
doi: 10.1073/pnas.1009080107 URL pmid: 20668240 |
[33] |
Deng J, Bi L, Zhou L, et al. Mycobacterium tuberculosis proteome microarray for global studies of protein function and immunogenicity. Cell Rep, 2014,9(6):2317-2329. doi: 10.1016/j.celrep.2014.11.023.
doi: 10.1016/j.celrep.2014.11.023 URL pmid: 25497094 |
[34] | Gideon HP, Phuah JY, Myers AJ, et al. Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro- and Anti-inflammatory Cytokines Is Associated with Steri-lization. PLoS Pathogen, 2015,11(1):e1004603. doi: 10.1371/journal.ppat.1004603. |
[35] |
Mothé BR, Arlehamn CSL, Dow C, et al. The TB-specific CD4+ T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis, 2015,95(6):722-735. doi: 10.1016/j.tube.2015.07.005.
doi: 10.1016/j.tube.2015.07.005 URL pmid: 26526557 |
[36] |
Ferrari G, Langen H, Naito M, et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell, 1999,97(4):435-447. doi: 10.1016/s0092-8674(00)80754-0.
doi: 10.1016/s0092-8674(00)80754-0 URL pmid: 10338208 |
[37] |
Schüller S, Neefjes J, Ottenhoff T, et al. Coronin is involved in uptake of Mycobacterium bovis BCG in human macrophages but not in phagosome maintenance. Cell Microbiol, 2001,3(12):785-793. doi: 10.1046/j.1462-5822.2001.00155.x.
doi: 10.1046/j.1462-5822.2001.00155.x URL pmid: 11736991 |
[38] |
Gutierrez MG, Master SS, Singh SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 2004,119(6):753-766. doi: 10.1016/j.cell.2004.11.038.
URL pmid: 15607973 |
[39] |
Drumm JE, Mi KX, Bilder P, et al. Mycobacterium Tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP-Binding: Requirement for Establishing Chronic Persistent Infection. PLoS Pathog, 2009,5(5):e1000460. doi: 10.1371/journal.ppat.1000460.
doi: 10.1371/journal.ppat.1000460 URL pmid: 19478878 |
[40] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[1] | 陈禹, 李晓睿, 王妙然, 张雨颀, 刘畅, 王照华, 石杰, 樊丽超, 尹智华, 谢建平. 金属离子在结核病中的作用研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 102-112. |
[2] | 徐雁南, 方梓昊, 赵文丽, 郑佳雄, 刘苏洋, 林健雄, 纪丽微, 常巧呈. 中国异烟肼耐药结核分枝杆菌基因突变特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 14-21. |
[3] | 万莹, 庞学文, 张帆. 2010—2020年天津市结核病防治健康促进工作效果评价[J]. 结核与肺部疾病杂志, 2025, 6(1): 22-29. |
[4] | 赵永年, 张丽杰, 王童敏. 2014—2023年新疆生产建设兵团肺结核报告发病流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 30-34. |
[5] | 郑建莉, 吴语媚, 张仕利, 杜恣闲, 李土荣, 陈石生, 林文革. 福建省龙岩市结核病重点高危人群主动筛查成本效果分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 35-39. |
[6] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[7] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[8] | 阎庆虎, 薛峰, 于泳, 秦毅, 阎庆梅, 崔嘉. 超声引导下微波消融技术在局限性结核病变治疗中的价值分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 55-60. |
[9] | 陈静, 秦娅莉, 王明栋, 杨儒斌, 王倩, 彭燕清, 邱继瑶, 张晓, 周昕艾. QuantiFERON-TB Gold Plus检测活动性肺结核的效能分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 61-67. |
[10] | 顾金花, 张盼盼. 三种结核分枝杆菌检测方法在某综合医院的应用价值评估[J]. 结核与肺部疾病杂志, 2025, 6(1): 68-72. |
[11] | 闫文华, 陈文君. 数智化健康教育在菌阳肺结核患者陪护者预防管理中的价值[J]. 结核与肺部疾病杂志, 2025, 6(1): 73-78. |
[12] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[13] | 张莹, 郭春辉. 结核性气管支气管狭窄的治疗研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 87-93. |
[14] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[15] | 欧庆芬. 非结核分枝杆菌肺病的CT诊断及鉴别诊断[J]. 结核与肺部疾病杂志, 2024, 5(S): 13-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||