Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (1): 69-72.doi: 10.3969/j.issn.2096-8493.2021.01.015
• Review Articles • Previous Articles Next Articles
Received:
2021-02-22
Online:
2021-03-30
Published:
2021-03-24
Contact:
JIAO Wei-wei
E-mail:Jiaowei310@163.com
JIAO Wei-wei. Advances in molecular diagnostic techniques of tuberculosis in children[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(1): 69-72. doi: 10.3969/j.issn.2096-8493.2021.01.015
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2021.01.015
[1] | World Health Organizaion. Global tuberculosis report 2020. Geneva: World Health Organizaion, 2020. |
[2] | World Health Organizaion. Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children, WHO Policy update. Geneva: World Health Organizaion, 2014. |
[3] | World Health Organizaion. Guidance for national tuberculosis programmes on the management of tuberculosis in children. Geneva: World Health Organization, 2014. |
[4] | Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Resp Med, 2015,3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8. |
[5] | World Health Organizaion. WHO Meeting Report of a Technical Expert Consultation: Non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organizaion, 2017. |
[6] |
Sabi I, Rachow A, Mapamba D, et al. Xpert MTB/RIF Ultra assay for the diagnosis of pulmonary tuberculosis in children: a multicentre comparative accuracy study. J Infect, 2018,77(4):321-327. doi: 10.1016/j.jinf.2018.07.002.
doi: 10.1016/j.jinf.2018.07.002 URL pmid: 30036606 |
[7] |
Sun L, Qi X, Liu F, et al. A Test for More Accurate Diagnosis of Pulmonary Tuberculosis. Pediatrics, 2019,144(5):e20190262. doi: 10.1542/peds.2019-0262.
doi: 10.1542/peds.2019-0262 URL pmid: 31653675 |
[8] |
Sun L, Zhu Y, Fang M, et al. Evaluation of Xpert MTB/RIF Ultra Assay for Diagnosis of Childhood Tuberculosis: a Multicenter Accuracy Study. J Clin Microbiol, 2020,58(9):e00702-20. doi: 10.1128/JCM.00702-20.
doi: 10.1128/JCM.00702-20 URL pmid: 32522831 |
[9] | Kabir S, Rahman SMM, Ahmed S, et al. Xpert Ultra assay on stool to diagnose pulmonary tuberculosis in children. Clin Infect Dis, 2020: ciaa583. doi: 10.1093/cid/ciaa583. |
[10] |
Liu XH, Xia L, Song B, et al. Stool-based Xpert MTB/RIF Ultra assay as a tool for detecting pulmonary tuberculosis in children with abnormal chest imaging: A prospective cohort study. J Infect, 2021,82(1):84-89. doi: 10.1016/j.jinf.2020.10.036.
doi: 10.1016/j.jinf.2020.10.036 URL pmid: 33275958 |
[11] |
Zar HJ, Workman LJ, Prins M, et al. Tuberculosis Diagnosis in Children Using Xpert Ultra on Different Respiratory Specimens. Am J Respir Crit Care Med, 2019,200(12):1531-1538. doi: 10.1164/rccm.201904-0772OC.
URL pmid: 31381861 |
[12] |
Chen Y, Wu P, Fu L, et al. Multicentre evaluation of Xpert MTB/RIF assay in detecting urinary tract tuberculosis with urine samples. Sci Rep, 2019,9(1):11053. doi: 10.1038/s41598-019-47358-3.
doi: 10.1038/s41598-019-47358-3 URL pmid: 31363115 |
[13] |
Lopez AL, Aldaba JG, Morales-Dizon M, et al. Urine Xpert MTB/RIF for the diagnosis of childhood tuberculosis. Int J Infect Dis, 2019,79:44-46. doi: 10.1016/j.ijid.2018.11.013.
doi: 10.1016/j.ijid.2018.11.013 URL pmid: 30496848 |
[14] | World Health Organizaion. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva:World Health Organizaion, 2016. |
[15] |
Shete PB, Farr K, Strnad L, et al. Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis, 2019,19(1):268. doi: 10.1186/s12879-019-3881-y.
doi: 10.1186/s12879-019-3881-y URL pmid: 30890135 |
[16] |
Ai JW, Zhou X, Xu T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg Microbes Infect, 2019,8(1):1361-1369. doi: 10.1080/22221751.2019.1664939.
doi: 10.1080/22221751.2019.1664939 URL pmid: 31522608 |
[17] |
Jiao WW, Wang Y, Wang GR, et al. Development and Clinical Validation of Multiple Cross Displacement Amplification Combined With Nanoparticles-Based Biosensor for Detection of Mycobacterium tuberculosis: Preliminary Results. Front Microbiol, 2019,10:2135. doi: 10.3389/fmicb.2019.02135.
doi: 10.3389/fmicb.2019.02135 URL pmid: 31572340 |
[18] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019,9:351. doi: 10.3389/fcimb.2019.00351.
doi: 10.3389/fcimb.2019.00351 URL pmid: 31681628 |
[19] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020,81(4):567-574. doi: 10.1016/j.jinf.2020.08.004.
doi: 10.1016/j.jinf.2020.08.004 URL pmid: 32768450 |
[20] |
Zhao M, Tang K, Liu F, et al. Metagenomic Next-Generation Sequencing Improves Diagnosis of Osteoarticular Infections From Abscess Specimens: A Multicenter Retrospective Study. Front Microbiol, 2020,11:2034. doi: 10.3389/fmicb.2020.02034.
doi: 10.3389/fmicb.2020.02034 URL pmid: 33042033 |
[21] |
Yan L, Sun W, Lu Z, et al. Metagenomic Next-Generation Sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of tuberculosis meningitis in HIV-negative population. Int J Infect Dis, 2020,96:270-275. doi: 10.1016/j.ijid.2020.04.048.
doi: 10.1016/j.ijid.2020.04.048 URL pmid: 32339718 |
[22] |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016,387(10035):2312-2322. doi: 10.1016/S0140-6736(15)01316-1.
doi: 10.1016/S0140-6736(15)01316-1 URL pmid: 27017310 |
[23] |
Anderson ST, Kaforou M, Brent AJ, et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N Engl J Med, 2014,370(18):1712-1723. doi: 10.1056/NEJMoa1303657.
doi: 10.1056/NEJMoa1303657 URL pmid: 24785206 |
[24] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016,4(3):213-224. doi: 10.1016/S2213-2600(16)00048-5.
doi: 10.1016/S2213-2600(16)00048-5 URL pmid: 26907218 |
[25] |
Tornheim JA, Madugundu AK, Paradkar M, et al. Transcriptomic Profiles of Confirmed Pediatric Tuberculosis Patients and Household Contacts Identifies Active Tuberculosis, Infection, and Treatment Response Among Indian Children. J Infect Dis, 2020,221(10):1647-1658. doi: 10.1093/infdis/jiz639.
doi: 10.1093/infdis/jiz639 URL pmid: 31796955 |
[1] | ZHANG Zhi-guo, GUO Hai-ping, PANG Yu. Considerations for the application of laboratory diagnostics in detecting drug-resistant tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 13-17. |
[2] | WANG Zhi-hui, DONG Ya-kun, CHI Yue-peng, DI Hong-qin, LIANG Ya-chong, XIE Lan-pin. Evaluation of the application value of fluorescence PCR probe melting curve method in detecting drug resistance in elderly pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 18-22. |
[3] | WANG Lian-bo, ZHANG Zhi-hua, LIU Feng-sheng, JIA Chen-guang, DONG Zhao-liang, YAO Xiao-wei, WU Shu-cai. Application value of GeneXpert MTB/RIF in diagnosis of joint tuberculosis and detection of rifampin resistance [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 23-25. |
[4] | ZHANG Zhe-nan, JIANG Nan-yang, WANG Wei, JIANG Lian-ju, LIU Yu-qin. Analysis of the effectiveness of two different surgical methods on treating cervical lymph node tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 26-30. |
[5] | XIAO Juan, PI Hong-lin, SUN Qing-peng. Analysis of clinical characteristics and therapeutic effect of 96 patients with spinal tuberculosis underwent surgical treatment [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 38-42. |
[6] | LI Yuan, GAO Feng-hua, JIN Feng. Evaluation of treatment and management effect of DOTS combined with WeChat on pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 50-53. |
[7] | FANG Lan-jun, WU Hui-zhong, HUANG Shan-shan, WEN Wen-pei, ZHOU Lin, CHEN Liang. Evaluation of intervention effect of WeChat health education on the knowledge, belief, and behavior of tuberculosis prevention and treatment in college freshmen [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 54-57. |
[8] | SUN Ming-lei, GUAN Li, LIANG Li-bo, ZHAO Juan, WANG Chen, ZOU Dan-dan. Bibliometric analysis of tuberculosis patient and care system delay based on Web of Science core database [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 62-68. |
[9] | GUI Xu-wei, KE Hui, GU Jin. Progress of diagnostic research in biomarkers tuberculous pleurisy [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 73-77. |
[10] | GUI Min, CHEN Jing-fang, DENG Guo-fang, FU Liang, ZENG Gu-qing. Research progress on the effectiveness and adverse reactions of clofazimine in the treatment of multidrug-resistant tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 78-82. |
[11] | HAN Li-jun, ZHAO Xue-yao. Molecular detection technologies for diagnosing tuberculous meningitis using cerebrospinal fluid [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 8-12. |
[12] | HAN Mei, HAN Pu, CHEN Ya-ting, YANG Song, YAN Xiao-feng. Study progress on the application of sputum induction in the etiological diagnosis of pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 83-87. |
[13] | ZHU Guo-feng, LIU Xiao-qing. The new era of systematic immunology of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 195-212. |
[14] | YI Jun-li, YANG Xin-yu, ZHANG Jie, TIAN Li-li, DING Bei-chuan, WU Wen-qing. Application evaluation of three methods for identification between Mycobacterium tuberculosis complex and non-tuberculous mycobacteria [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 240-244. |
[15] | SU Bi-yi, ZHOU De-wang, MA Pin-yun, GUAN Ping, TAN Yao-ju. Diagnostic value of melting curve method in detecting resistance of Mycobacterium tuberculosis to rifampicin and isoniazid [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 245-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||