Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (1): 13-17.doi: 10.3969/j.issn.2096-8493.2021.01.004
• Special Topic • Previous Articles Next Articles
ZHANG Zhi-guo1, GUO Hai-ping2, PANG Yu2()
Received:
2021-02-24
Online:
2021-03-30
Published:
2021-03-24
Contact:
PANG Yu
E-mail:pangyupound@163.com
ZHANG Zhi-guo, GUO Hai-ping, PANG Yu. Considerations for the application of laboratory diagnostics in detecting drug-resistant tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(1): 13-17. doi: 10.3969/j.issn.2096-8493.2021.01.004
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2021.01.004
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | 刘斌, 刘君, 裴豪, 等. 结核分枝杆菌实验室及其药敏检测技术进展. 中华医院感染学杂志, 2020,30(15):2396-2400. doi: 10.11816/cn.ni.2020-191954. |
[3] |
Wells WA, Boehme CC, Cobelens FG, et al. Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis, 2013,13(5):449-458. doi: 10.1016/S1473-3099(13)70025-2.
doi: 10.1016/S1473-3099(13)70025-2 URL |
[4] | 王丽娜. 痰液结核杆菌涂片及培养在初诊结核病中的应用比较. 罕少疾病杂志, 2019,26(5):19-21. doi: 10.3969/j.issn.1009-3257.2019.05.008. |
[5] |
Kelly-Cirino CD, Musisi E, Byanyima P, et al. Investigation of OMNIgene·SPUTUM performance in delayed tuberculosis testing by smear, culture, and Xpert MTB/RIF assays in Uganda. J Epidemiol Glob Health, 2017,7(2):103-109. doi: 10.1016/j.jegh.2017.04.001.
doi: 10.1016/j.jegh.2017.04.001 URL pmid: 28413105 |
[6] | 徐成良, 陈兆俊, 陆英, 等. 结核分枝杆菌两种培养方法比较. 上海预防医学, 2016,28(8):563-564. doi: 10.19428/j.cnki.sjpm.2016.08.016. |
[7] | 李仁忠, 王黎霞. 实验室新技术用于耐药结核病诊断流程的建议. 中华结核和呼吸杂志, 2016,39(7):568-569. doi: 10.3760/cma.j.issn.1001-0939.2016.07.020. |
[8] | 刘金娜. 微量液体培养基最低抑菌浓度法与罗氏比例法在结核分枝杆菌药敏试验中的价值比较. 实用临床医药杂志, 2020,24(17):28-30,40. doi: 10.7619/jcmp.202017007. |
[9] | 逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021,14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05. |
[10] | Harries AD, Kumar AMV. Challenges and Progress with Diagnosing Pulmonary Tuberculosis in Low- and Middle-Income Countries. Diagnostics (Basel), 2018,8(4):78. doi: 10.3390/diagnostics8040078. |
[11] | 赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 88-105. |
[12] |
Chauhan DS, Sharma R, Parashar D, et al. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis in clinical spe-cimens by real-time po8lymerase chain reaction hybridisation probe method. Indian J Med Microbiol, 2018,36(2):211-216. doi: 10.4103/ijmm.IJMM_14_304.
doi: 10.4103/ijmm.IJMM_14_304 URL pmid: 30084413 |
[13] | 饶兵. 线性探针技术在耐药结核病诊断中的应用. 东方药膳, 2020 (8):35. |
[14] | 刘立宾, 王静, 李浩, 等. 三种分子方法检测结核分枝杆菌利福平耐药性的比较. 中华临床感染病杂志, 2020,13(4):270-275. doi: 10.3760/cma.j.issn.1674-2397.2020.04.004. |
[15] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020,58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 URL pmid: 32759357 |
[16] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med, 2015,3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8.
doi: 10.1016/S2213-2600(15)00095-8 URL pmid: 25812968 |
[17] |
Jeyashree K, Shanmugasundaram D, Rade K, et al. Impact and operational feasibility of TrueNatTM MTB/Rif under India's RNTCP . Public Health Action, 2020,10(3):87-91. doi: 10.5588/pha.20.0004.
doi: 10.5588/pha.20.0004 URL pmid: 33134121 |
[18] |
Nikam C, Jagannath M, Narayanan MM, et al. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PLoS One, 2013,8(1):e51121. doi: 10.1371/journal.pone.0051121.
doi: 10.1371/journal.pone.0051121 URL pmid: 23349670 |
[19] |
Nikam C, Kazi M, Nair C, et al. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int J Mycobacteriol, 2014,3(3):205-210. doi: 10.1016/j.ijmyco.2014.04.003.
doi: 10.1016/j.ijmyco.2014.04.003 URL pmid: 26786489 |
[20] |
Ciesielczuk H, Kouvas N, North N, et al. Evaluation of the BD MAXTM MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur J Clin Microbiol Infect Dis, 2020,39(7):1321-1327. doi: 10.1007/s10096-020-03847-2.
doi: 10.1007/s10096-020-03847-2 URL pmid: 32078067 |
[21] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020,22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: 10.1016/j.jmoldx.2020.06.013 URL pmid: 32688054 |
[22] | 徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020,24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023. |
[23] |
Brandao AP, Pinhata JMW, Oliveira RS, et al. Speeding up the diagnosis of multidrug-resistant tuberculosis in a high-burden region with the use of a commercial line probe assay. J Bras Pneumol, 2019,45(2):e20180128. doi: 10.1590/1806-3713/e20180128.
doi: 10.1590/1806-3713/e20180128 URL pmid: 31017225 |
[24] |
Sharma K, Sharma M, Shree R, et al. Xpert MTB/RIF ultra for the diagnosis of tuberculous meningitis: A diagnostic accuracy study from India. Tuberculosis (Edinb), 2020,125:101990. doi: 10.1016/j.tube.2020.101990.
doi: 10.1016/j.tube.2020.101990 URL |
[25] | Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6):CD009593. doi: 10.1002/14651858.CD009593.pub4. |
[26] | 赵国连, 崔晓利, 康磊, 等. 荧光PCR探针熔解曲线技术检测涂阳患者痰标本中结核分枝杆菌耐药性的价值. 中国防痨杂志, 2019,41(2):149-155. doi: 10.3969/j.issn.1000-6621.2019.02.006. |
[27] |
Pang Y, Dong H, Tan Y, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep, 2016,6:25330. doi: 10.1038/srep25330.
doi: 10.1038/srep25330 URL pmid: 27149911 |
[28] |
Ford CB, Lin PL, Chase MR, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet, 2011,43(5):482-486. doi: 10.1038/ng.811.
doi: 10.1038/ng.811 URL pmid: 21516081 |
[29] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[30] |
Gygli SM, Keller PM, Ballif M, et al. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019,63(4):e02175-18. doi: 10.1128/AAC.02175-18.
doi: 10.1128/AAC.02175-18 URL pmid: 30718257 |
[31] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8 URL pmid: 31345251 |
[32] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase Ⅱ/Ⅲ, multicenter, randomized, open-label clinical trial. Trials, 2019,20(1):57. doi: 10.1186/s13063-018-3053-1.
doi: 10.1186/s13063-018-3053-1 URL pmid: 30651149 |
[33] |
Sharma N, Singla N, Khanna A, et al. Pattern and trends of drug sensitivity in MDR-TB cases in Delhi (2009—2014): A record based study. Indian J Tuberc, 2019,66(2):222-226. doi: 10.1016/j.ijtb.2019.02.017.
doi: 10.1016/j.ijtb.2019.02.017 URL pmid: 31151488 |
[34] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[35] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160. doi: 10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL pmid: 27810467 |
[36] | World Health Organization. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. Geneva: World Health Organization, 2021. |
[1] | ZHOU Wei, ZHANG Shao-yan, WU Xian-wei, GUO Xiao-yan, LU Zhen-hui. Meta analysis of pulmonary multidrug-resistant bacterial infection treated by combination of traditional Chinese and Western medicine [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 43-49. |
[2] | JIAO Wei-wei. Advances in molecular diagnostic techniques of tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 69-72. |
[3] | HAN Li-jun, ZHAO Xue-yao. Molecular detection technologies for diagnosing tuberculous meningitis using cerebrospinal fluid [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 8-12. |
[4] | YI Jun-li, YANG Xin-yu, ZHANG Jie, TIAN Li-li, DING Bei-chuan, WU Wen-qing. Application evaluation of three methods for identification between Mycobacterium tuberculosis complex and non-tuberculous mycobacteria [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 240-244. |
[5] | MA Yan, YANG Xiao-jun, REN Zhen-juan, SU Yun-kai. Clinical value of Genechip in detecting multidrug-resistant Mycobacterium tuberculosis bacteria in sputum samples [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 112-116. |
[6] | REN Zhen-juan, ZHANG Hai-jie, SU Yun-kai, MA Yan, LIU Yao. Correlation between amikacin resistance and rrs gene mutation in multidrug-resistant Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 117-120. |
[7] | TANG Gui-hua, SUN Qian, WANG Xiao-fan, XIAN Hai-bin, ZHANG Qian, YANG Xiao-wei, WANG Li. The value of GeneXpert MTB/RIF technology in tuberculosis detection and resistance to rifampin [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 121-125. |
[8] | FENG Feng, TANG Feng-zhen, YAO Ming-mei, CHENG Lu, DU Li-jun. Application progress of proteome in research of the Mycobacterium tuberculosis infection [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 174-178. |
[9] | WANG Li-hua, LIU Yan-yan. Clinical analysis of 27 neurobrucellosis cases misdiagnosed as tuberculosis meningitis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 183-185. |
[10] | HU Xiao-guang, CHEN Can-can, ZHANG Ya-nan, MA Jun-yang, CHEN Wei. The main immune cells against Mycobacterium tuberculosis infection and their mechanisms [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(1): 71-77. |
[11] | Chun-kui CAI,Xin-tong LYU,Gang LI,Shi-xue SUN,Xiao-feng GU,Yan XU,Ying WANG,Yang YU,Xi-wei LU. Analysis of drug resistance of tuberculosis patients in Dalian from 2012 to 2018 [J]. Journal of Tuberculosis and Lung Health, 2019, 8(4): 265-271. |
[12] | Yin-suo YAN,Li-ying TAO,Hong-wei ZHANG,Yan-yuan LI,Zhi-dong GAO. Construction of a monitoring system for drug resistance screening of new pathogen positive pulmonary tuberculosis cases based on Power Pivot [J]. Journal of Tuberculosis and Lung Health, 2019, 8(4): 294-298. |
[13] | YU Da-wei,SONG Hua-feng,QIU Wen-na,XUE Jing,LI Fang-hua,XU Ping. Application value of GeneXpert MTB/RIF in the detection of MTB rifampicin resistance [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 160-162. |
[14] | WU Hai-yan,YE Zhi-jian,WANG Xia-fang,YU Xin,WU Mei-ying.. Evaluation of clinical value of GeneXpert MTB/RIF in diagnosis and drug resistance detection of pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 172-177. |
[15] | Yan-fei WANG,Jin-feng WU,Qian SUN,Lu HAN,Shu-bo MA,Zhi-guo ZHANG. Ofloxacin-resistant characteristics of Mycobacterium tuberculosis isolated from Changping District in Beijing during 2016-2018 [J]. Journal of Tuberculosis and Lung Health, 2019, 8(2): 111-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||