Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (2): 179-185.doi: 10.19983/j.issn.2096-8493.20230118
• Review Articles • Previous Articles
Received:
2023-09-27
Online:
2024-04-20
Published:
2024-04-11
Contact:
Xie Jungang
E-mail:xiejjgg@hotmail.com
CLC Number:
Peng Maocuo, Xie Jungang. Research progress on immune cells in chronic obstructive pulmonary disease complicated with cardiovascular disease[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(2): 179-185. doi: 10.19983/j.issn.2096-8493.20230118
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20230118
[1] | Halpin DMG, Criner GJ, Papi A, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2021, 203 (1): 24-36. doi:10.1164/rccm.202009-3533SO. |
[2] |
Curkendall SM, Deluise C, Jones JK, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Annals of Epidemiology, 2006, 16 (1): 63-70.
doi: 10.1016/j.annepidem.2005.04.008 pmid: 16039877 |
[3] |
Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016, 138 (1): 16-27. doi:10.1016/j.jaci.2016.05.011.
pmid: 27373322 |
[4] |
Donaldson GC, Hurst JR, Smith CJ, et al. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest, 2010, 137 (5): 1091-1097. doi:10.1378/chest.09-2029.
pmid: 20022970 |
[5] |
Curkendall SM, Lanes S, De Luise C, et al. Chronic obstructive pulmonary disease severity and cardiovascular outcomes. Eur J Epidemiol, 2006, 21 (11): 803-813.
doi: 10.1007/s10654-006-9066-1 pmid: 17106760 |
[6] |
Barnes PJ. Inflammatory endotypes in COPD. Allergy, 2019, 74 (7): 1249-1256. doi:10.1111/all.13760.
pmid: 30834543 |
[7] | De Grove KC, Provoost S, Verhamme FM, et al. Characteri-zation and Quantification of Innate Lymphoid Cell Subsets in Human Lung. PLoS One, 2016, 11 (1): e0145961. doi:10.1371/journal.pone.0145961. |
[8] | Fani L, Van Der Willik KD, Bos D, et al. The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med, 2020, 17 (5): e1003115. doi:10.1371/journal.pmed.1003115. |
[9] | Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol, 2022, 22 (4): 251-265. doi:10.1038/s41577-021-00584-1. |
[10] | Bain WG, Tripathi A, Mandke P, et al. Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res, 2016, 2016: 1280347. doi:10.1155/2016/1280347 |
[11] |
To M, Takagi D, Akashi K, et al. Sputum plasminogen activator inhibitor-1 elevation by oxidative stress-dependent nuclear factor-κB activation in COPD. Chest, 2013, 144 (2): 515-521. doi:10.1378/chest.12-2381.
pmid: 23558707 |
[12] |
Eapen MS, Hansbro PM, Mcalinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep, 2017, 7 (1): 13392. doi:10.1038/s41598-017-13888-x.
pmid: 29042607 |
[13] | Wang L, Chen Q, Yu Q, et al. Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease. Int Immunopharmacol, 2021, 96: 107700. doi:10.1016/j.intimp.2021.107700. |
[14] | Abdolmaleki F, Gheibi Hayat SM, Bianconi V, et al. Atherosclerosis and immunity: A perspective. Trends Cardiovasc Med, 2019, 29 (6): 363-371. doi:10.1016/j.tcm.2018.09.017 |
[15] |
Hume DA. The Many Alternative Faces of Macrophage Activation. Front Immunol, 2015, 6: 370. doi:10.3389/fimmu.2015.00370.
pmid: 26257737 |
[16] |
Rahman K, Fisher EA. Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Front Cardiovasc Med, 2018, 5: 32. doi:10.3389/fcvm.2018.00032.
pmid: 29868610 |
[17] |
Barrett TJ. Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol, 2020, 40 (1): 20-33. doi:10.1161/ATVBAHA.119.312802.
pmid: 31722535 |
[18] | Tregay N, Begg M, Cahn A, et al. Use of autologous 99mTechnetium-labelled neutrophils to quantify lung neutrophil clearance in COPD. Thorax, 2019, 74 (7): 659-666. doi:10.1136/thoraxjnl-2018-212509 |
[19] | El-Gazzar AG, Kamel MH, Elbahnasy OKM, et al. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev Respir Med, 2020, 14 (1): 111-116. doi:10.1080/17476348.2019.1675517 |
[20] |
An Z, Li J, Yu J, et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle, 2019, 18 (21): 2928-2938. doi:10.1080/15384101.2019.1662678.
pmid: 31496351 |
[21] |
Dong T, Santos S, Yang Z, et al. Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst, 2020, 145 (5): 1583-1604. doi:10.1039/c9an01704f.
pmid: 31915768 |
[22] | Chi Y, Di Q, Han G, et al. Mir-29b mediates the regulation of Nrf 2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci, 2019, 26 (8): 1915-1921. doi:10.1016/j.sjbs.2019.07.011. |
[23] | Jiang M, Liu H, Li Z, et al. ILC2s Induce Adaptive Th2-Type Immunity in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm, 2019, 2019: 3140183. doi:10.1155/2019/3140183. |
[24] |
Whitman SC, Ravisankar P, Elam H, et al. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/- mice. Am J Pathol, 2000, 157 (6): 1819-1824.
doi: 10.1016/s0002-9440(10)64820-1 pmid: 11106554 |
[25] |
Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest, 2004, 114 (3): 427-437.
doi: 10.1172/JCI20479 pmid: 15286809 |
[26] |
Cardilo-Reis L, Gruber S, Schreier SM, et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med, 2012, 4 (10): 1072-1086. doi:10.1002/emmm.201201374.
pmid: 23027612 |
[27] |
Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol, 2003, 163 (3): 1117-1125.
doi: 10.1016/S0002-9440(10)63471-2 pmid: 12937153 |
[28] | Roos AB, Sethi S, Nikota J, et al. IL-17A and the Promotion of Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2015, 192 (4): 428-437. doi:10.1164/rccm.201409-1689OC. |
[29] |
Erbel C, Akhavanpoor M, Okuyucu D, et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol, 2014, 193 (9): 4344-4355. doi:10.4049/jimmunol.1400181.
pmid: 25261478 |
[30] | Subramanian M, Thorp E, Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res, 2015, 116 (2): e13-e24. doi:10.1161/CIRCRESAHA.116.304794. |
[31] |
Williams M, Todd I, Fairclough LC. The role of CD8+T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res, 2021, 70 (1): 11-18. doi:10.1007/s00011-020-01408-z.
pmid: 33037881 |
[32] |
Hodge S, Hodge G, Nairn J, et al. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects. COPD, 2006, 3 (4): 179-187.
pmid: 17361498 |
[33] | Schäfer S, Zernecke A. CD8+ T Cells in Atherosclerosis. Cells, 2020, 10 (1). doi:10.3390/cells10010037. |
[34] |
Kyaw T, Winship A, Tay C, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation, 2013, 127 (9): 1028-1039. doi:10.1161/CIRCULATIONAHA.112.001347.
pmid: 23395974 |
[35] | Van Duijn J, Kritikou E, Benne N, et al. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc Res, 2019, 115 (4): 729-738. doi:10.1093/cvr/cvy261. |
[36] | Freeman CM, Curtis JL. Lung Dendritic Cells: Shaping Immune Responses throughout Chronic Obstructive Pulmonary Disease Progression. Am J Respir Cell Mol Biol, 2017, 56 (2): 152-159. doi:10.1165/rcmb.2016-0272TR. |
[37] | Shan M, Cheng HF, Song LZ, et al. Lung myeloid dendritic cells coordinately induce TH1 and TH 17 responses in human emphysema. Sci Transl Med, 2009, 1 (4): 4ra10. doi:10.1126/scitranlsmed.3000154. |
[38] | Mori M, Clausson CM, Sanden C, et al. Expansion of Phenotypically Altered Dendritic Cell Populations in the Small Airways and Alveolar Parenchyma in Patients with Chronic Obstructive Pulmonary Disease. J Innate Immun, 2022. doi:10.1159/000526080. |
[39] |
Paulson KE, Zhu SN, Chen M, et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res, 2010, 106 (2): 383-390. doi:10.1161/CIRCRESAHA.109.210781.
pmid: 19893012 |
[40] |
Ahrens S, Zelenay S, Sancho D, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity, 2012, 36 (4): 635-645. doi:10.1016/j.immuni.2012.03.008.
pmid: 22483800 |
[41] | Yan L, Wu X, Wu P, et al. Increased expression of Clec9A on cDC1s associated with cytotoxic CD8+ T cell response in COPD. Clin Immunol, 2022, 242: 109082. doi:10.1016/j.clim.2022.109082. |
[42] |
Haddad Y, Lahoute C, Clément M, et al. The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res, 2017, 121 (3): 234-243. doi:10.1161/CIRCRESAHA.117.310960.
pmid: 28607102 |
[43] |
Brassington K, Selemidis S, Bozinovski S, et al. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond), 2019, 133 (7): 885-904. doi:10.1042/CS20180316.
pmid: 30979844 |
[44] |
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2016, 37 (27): 2129-2200. doi:10.1093/eurheartj/ehw128.
pmid: 27206819 |
[45] | Dransfield MT, Voelker H, Bhatt SP, et al. Metoprolol for the Prevention of Acute Exacerbations of COPD. N Engl J Med, 2019, 381 (24): 2304-2314. doi:10.1056/NEJMoa1908142. |
[46] |
Yang YL, Xiang ZJ, Yang JH, et al. Association of β-blocker use with survival and pulmonary function in patients with chronic obstructive pulmonary and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J, 2020, 41 (46): 4415-4422. doi:10.1093/eurheartj/ehaa793.
pmid: 33211823 |
[47] |
Nguyen LP, Omoluabi O, Parra S, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol, 2008, 38 (3): 256-262.
doi: 10.1165/rcmb.2007-0279RC URL |
[48] |
Lin R, Peng H, Nguyen LP, et al. Changes in beta 2-adrenoceptor and other signaling proteins produced by chronic admi-nistration of ‘beta-blockers’ in a murine asthma model. Pulm Pharmacol Ther, 2008, 21 (1): 115-124.
doi: 10.1016/j.pupt.2007.06.003 URL |
[49] |
Young RP, Hopkins R, Eaton TE. Pharmacological actions of statins: potential utility in COPD. Eur Respir Rev, 2009, 18 (114): 222-232. doi:10.1183/09059180.00005309.
pmid: 20956147 |
[50] | Kandelouei T, Abbasifard M, Imani D, et al. Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators Inflamm, 2022, 2022: 8732360. doi:10.1155/2022/8732360. |
[51] |
Arabi SM, Chambari M, Malek-Ahmadi M, et al. The effect of statin therapy in combination with ezetimibe on circulating C-reactive protein levels: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology, 2022, 30 (5): 1597-1615. doi:10.1007/s10787-022-01053-4
pmid: 35988111 |
[52] | Zeki A A, Franzi L, Last J, et al. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med, 2009, 180 (8): 731-740. doi:10.1164/rccm.200901-0018OC. |
[53] |
Lee JH, Lee DS, Kim EK, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med, 2005, 172 (8): 987-993.
doi: 10.1164/rccm.200501-041OC URL |
[54] | Wright JL, Zhou S, Preobrazhenska O, et al. Statin reverses smoke-induced pulmonary hypertension and prevents emphysema but not airway remodeling. Am J Respir Crit Care Med, 2011, 183 (1): 50-58. doi:10.1164/rccm.201003-0399OC. |
[55] |
Neukamm A, Høiseth AD, Einvik G, et al. Rosuvastatin treatment in stable chronic obstructive pulmonary disease (RODEO): a randomized controlled trial. J Intern Med, 2015, 278 (1): 59-67. doi:10.1111/joim.12337.
pmid: 25495178 |
[56] | Schenk P, Spiel AO, Hüttinger F, et al. Can simvastatin reduce COPD exacerbations? A randomised double-blind controlled study. Eur Respir J, 2021, 58 (1). doi:10.1183/13993003.01798-2020. |
[57] |
Zhang W, Zhang Y, Li CW, et al. Effect of Statins on COPD: A Meta-Analysis of Randomized Controlled Trials. Chest, 2017, 152 (6): 1159-1168. doi:10.1016/j.chest.2017.08.015.
pmid: 28847550 |
[58] |
Shrikrishna D, Astin R, Kemp PR, et al. Renin-angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clin Sci (Lond), 2012, 123 (8): 487-498. doi:10.1042/CS20120081.
pmid: 22757959 |
[59] |
Podowski M, Calvi C, Metzger S, et al. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice. J Clin Invest, 2012, 122 (1): 229-240. doi:10.1172/JCI46215.
pmid: 22182843 |
[60] | Ehteshami-Afshar S, Mooney L, Dewan P, et al. Clinical Characteristics and Outcomes of Patients With Heart Failure With Reduced Ejection Fraction and Chronic Obstructive Pulmonary Disease: Insights From PARADIGM-HF. J Am Heart Assoc, 2021, 10 (4): e019238. doi:10.1161/JAHA.120.019238. |
[61] |
Parikh MA, Aaron CP, Hoffman EA, et al. Angiotensin-Converting Inhibitors and Angiotensin Ⅱ Receptor Blockers and Longitudinal Change in Percent Emphysema on Computed Tomography. The Multi-Ethnic Study of Atherosclerosis Lung Study. Ann Am Thorac Soc, 2017, 14 (5): 649-658. doi:10.1513/AnnalsATS.201604-317OC.
pmid: 28207279 |
[62] | Duchez AC, Boudreau LH, Naika GS, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-ⅡA. Proc Natl Acad Sci U S A, 2015, 112 (27): E3564-E3573. doi:10.1073/pnas.1507905112. |
[63] |
Zinellu A, Paliogiannis P, Sotgiu E, et al. Platelet Count and Platelet Indices in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD, 2021, 18 (2): 231-245. doi:10.1080/15412555.2021.1898578.
pmid: 33929925 |
[64] |
Harrison MT, Short P, Williamson PA, et al. Thrombocytosis is associated with increased short and long term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax, 2014, 69 (7): 609-615. doi:10.1136/thoraxjnl-2013-203996.
pmid: 24743560 |
[65] | Ekström MP, Hermansson AB, Ström KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013, 187 (7): 715-720. doi:10.1164/rccm.201208-1565OC. |
[1] | Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 172-178. |
[2] | Cao Hong, Qian Bing, Wu Jinju. Current situation of tuberculosis epidemic in schools and research progress in prevention and control [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 88-92. |
[3] | Dai Zhongshang, Zhong Yanjun, Chen Yan. Research progress on chronic obstructive pulmonary disease with bronchiectasis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 499-505. |
[4] | Guo Jing, Lou Nannan, Li Jialin, Zhang Hua, Ma Xiang. Research progress of chest tightness variant asthma and comparison with typical asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 413-418. |
[5] | Ruan Shujin, Zeng Jian, Chen Jingfang, Wang Xiufen, Liu Linlin, Jiang Youli, Li Mengjun. Research progress on tuberculosis patients treatment adherence: current status, influencing factors, and intervention measures [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 419-424. |
[6] | Feng Yi, Chang Qing, Li Feng. Research progress of combined pulmonary fibrosis and emphysema [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 425-431. |
[7] | Yuan Lirong, Li Shuhua, Cui Xiaohong, Pei Junli, Gong Qiaoqiao. Research progress of nurses emergency training for nursing emergencies in public health [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 235-239. |
[8] | Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin. Research progress of targeting bronchial epithelium in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 153-157. |
[9] | Hu Tingting, Chang Chun. The role of ceramide and ceramide synthetase in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 164-168. |
[10] | Ren Tantan, Zhan Senlin, Wang Yuxiang, Yu Hong, Zheng Junfeng, Yang Min, Deng Guofang, Zhang Peize. Clinical features and literature review of active tuberculosis associated with PD-1/PD-L1 pathway inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 27-32. |
[11] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[12] | Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 415-419. |
[13] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[14] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
[15] | Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 320-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||