Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (2): 172-178.doi: 10.19983/j.issn.2096-8493.20240040
• Review Articles • Previous Articles Next Articles
Yan Yanfeng1, Qi Wenxia2, Cui Yonghui1, Wei Caihong1()
Received:
2024-02-20
Online:
2024-04-20
Published:
2024-04-11
Contact:
Wei Caihong
E-mail:weicaihong_1974@163.com
Supported by:
CLC Number:
Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(2): 172-178. doi: 10.19983/j.issn.2096-8493.20240040
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20240040
[1] |
Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet, 2022, 399(10342):2227-2242. doi:10.1016/S0140-6736(22)00470-6.
pmid: 35533707 |
[2] |
Murgia N, Gambelunghe A. Occupational COPD-The most under-recognized occupational lung disease?. Respirology, 2022, 27(6):399-410. doi:10.1111/resp.14272.
pmid: 35513770 |
[3] |
López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology, 2016, 21(1):14-23. doi:10.1111/resp.12660.
pmid: 26494423 |
[4] | Vogelmeier CF, Román-Rodríguez M, Singh D, et al. Goals of COPD treatment:Focus on symptoms and exacerbations. Respir Med, 2020, 166:105938. doi:10.1016/j.rmed.2020.105938. |
[5] | Zhu B, Wang Y, Ming J, et al. Disease burden of COPD in China: a systematic review. Int J Chron Obstruct Pulmon Dis, 2018, 13:1353-1364. doi:10.2147/COPD.S16155. |
[6] |
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med, 2020, 41(3):421-438. doi:10.1016/j.ccm.2020.06.007.
pmid: 32800196 |
[7] | Silverman EK. Genetics of COPD. Annu Rev Physiol, 2020, 10(82):413-431. doi:10.1146/annurev-physiol-021317-121224. |
[8] | 何小双. 慢性阻塞性肺疾病患者呼出气冷凝液中白介素8、白介素17水平及其与FEV1%的关系研究. 石河子:石河子大学, 2016. |
[9] |
Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830):1484-1488. doi:10.1126/science.1138341.
pmid: 17510325 |
[10] | Manevski M, Devadoss D, Long C, et al. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol, 2022, 13:803362. doi:10.3389/fimmu.2022.803362. |
[11] | Vierbuchen T, Agarwal S, Johnson JL, et al. The lncRNA LUCAT 1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A, 2023, 120(1):e2213715120. doi:10.1073/pnas.2213715120. |
[12] | Skvortsova K, Iovino N, Bogdanovic'O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol, 2018, 19(12):774-790. doi:10.1038/s41580-018-0074-2. |
[13] |
Zhang L, Valizadeh H, Alipourfard I, et al. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD, 2020, 17(3):333-342. doi:10.1080/15412555.2020.1780576.
pmid: 32558592 |
[14] | Schamberger AC, Mise N, Meiners S, et al. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov, 2014, 9(6):609-628. doi:10.1517/17460441.2014.913020. |
[15] | Deng L, Li W, Zhang J. LDAH2V: Exploring Meta-Paths Across Multiple Networks for lncRNA-Disease Association Prediction. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(4): 1572-1581. doi:10.1109/TCBB.2019.2946257. |
[16] | 顾斌, 张倩. 长链非编码RNA和慢性阻塞性肺疾病的关系研究进展. 国际呼吸杂志, 2019, 39(2):129-133. doi:10.3760/cma.j.issn.1673-436X.2019.02.010. |
[17] | Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol, 2021, 220(2):e202009045. doi:10.1083/jcb.202009045. |
[18] | Zhou AY, Zhao YY, Zhou ZJ, et al. Microarray Analysis of Long Non-Coding RNAs in Lung Tissues of Patients with COPD and HOXA-AS2 Promotes HPMEC Proliferation via Notch1. Chron Obstruct Pulmon Dis, 2020, 15:2449-2460. doi:10.2147/COPD.S259601. |
[19] |
Zhang H, Sun D, Li D, et al. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model. Sci Rep, 2018, 8(1):7609. doi:10.1038/s41598-018-25702-3.
pmid: 29765063 |
[20] | Guo C, Qi Y, Qu J, et al. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des, 2020, 26(6):688-700. doi:10.2174/1381612826666191227154009. |
[21] | Gu W, Yuan Y, Wang L, et al. Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD. CellMol Med, 2019, 23(11):7200-7209. doi:10.1111/jcmm.14389. |
[22] | Cazzola M, Hanania NA, Page CP, et al. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis, 2023, 18:1333-1352. doi:10.2147/COPD.S419056. |
[23] | Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis, 2018, 13:3341-3348. doi:10.2147/COPD.S176122. |
[24] | Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu RevPathol, 2009, 4:435-459. doi:10.1146/annurev.pathol.4.110807.092145. |
[25] |
van Dijk WD, Heijdra Y, Lenders JW, et al. Cigarette smoke retention and bronchodilation in patients with COPD. A controlled randomized trial. Respir Med, 2013, 107(1):112-119. doi:10.1016/j.rmed.2012.09.019.
pmid: 23069326 |
[26] | Wu M, Lai T, Jing D, et al. Epithelium-derived IL17A Promotes Cigarette Smoke-induced Inflammation and Mucus Hyperproduction. Am J Respir Cell Mol Biol, 2021, 65(6):581-592. doi:10.1165/rcmb.2020-0424OC. |
[27] | Devadoss D, Long C, Langley RJ, et al. Long Noncoding Transcriptome in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol, 2019, 61(6):678-688. doi:10.1165/rcmb.2019-0184TR. |
[28] |
Shashkin P, Simpson D, Mishin V, et al. Expression of CXCL 16 in Human T Cells. Arterioscler Thromb Vasc Biol, 2003, 23(1):148-149. doi:10.1161/01.atv.0000043906.61088.4b.
pmid: 12524239 |
[29] | Qu X, Dang X, Wang W, et al. Long Noncoding RNAs and mRNA Regulation in Peripheral Blood Mononuclear Cells of Patients with Chronic Obstructive Pulmonary Disease. Mediators Inflamm, 2018, 2018:7501851. doi:10.1155/2018/7501851. |
[30] | Huang Q, Huang C, Luo Y, et al. Circulating lncRNA NEAT 1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. Am J Emerg Med, 2018, 36(9):1659-1663. doi:10.1016/j.ajem.2018.06.008. |
[31] | Yang K, Zeng L, Ge A, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol, 2022, 13:930171. doi:10.3389/fimmu.2022.930171. |
[32] | Zhang F, Wu L, Qian J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Autoimmun, 2016, 75:96-104. doi:10.1016/j.jaut.2016.07.012. |
[33] | Ming X, Duan W, Yi W. Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk, and correlates with higher disease severity, inflammation, and lower miR-193a in COPD patients. Int J Clin Exp Pathol, 2019, 12(8):2837-2848. |
[34] |
Radicioni G, Ceppe A, Ford AA, et al. Airway Mucin MUC5AC and MUC5B Concentrations and the Initiation and Progression of Chronic Obstructive Pulmonary Disease: An Analysis of the SPIROMICS Cohort. Lancet Respir Med, 2021, 9(11):1241-1254. doi:10.1016/S2213-2600(21)00079-5.
pmid: 34058148 |
[35] | Baginski TK, Dabbagh K, Satjawatcharaphong C, et al. Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli. Am J Respir Cell MolBiol, 2006, 35(2):165-174. doi:10.1165/rcmb.2005-0259OC. |
[36] | Devadoss D, Daly G, Manevski M, et al. A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells. Mucosal Immunol, 2021, 14(3):630-639. doi:10.1038/s41385-020-00352-9. |
[37] | Manevski M, Devadoss D, Long C, et al. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol, 2022, 13:803362. doi:10.3389/fimmu.2022.803362. |
[38] | Shen Q, Zheng J, Wang X, et al. LncRNA SNHG5 regulates cell apoptosis and inflammation by miR-132/PTEN axis in COPD. Biomed Pharmacothe, 2020, 126:110016. doi:1016.2020/j.biopha.110016.2020. |
[39] | Feng H, Zhang D, Yin Y, et al. Salidroside ameliorated the pulmonary inflammation induced by cigarette smoke via mitigating M1 macrophage polarization by JNK/c-Jun. Phytother Res, 2023, 37(9):4251-4264. doi:10.1002/ptr.7905. |
[40] | Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobio-logy, 2018, 223(4/5):383-396. doi:10.1016/j.imbio.2017.11.001. |
[41] |
Eapen MS, Hansbro PM, McAlinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep, 2017, 7(1):13392. doi:10.1038/s41598-017-13888-x.
pmid: 29042607 |
[42] | Liu R, Sun X, Hu Z, et al. Knockdown of long non-coding RNA MIR155HG suppresses melanoma cell proliferation, and deregulated MIR155HG in melanoma is associated with M1/M2 balance and macrophage infiltration. Cells Dev, 2022, 170:203768. doi:10.1016/j.cdev.2022.203768. |
[43] | Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization inchronic obstructive pulmonary disease. Biomed Pharmacother, 2019, 117:109015. doi:10.1016/j.biopha.2019.109015. |
[44] | Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol, 2020, 36:101679. doi:10.1016/j.redox.2020.101679. |
[45] |
Nucera F, Mumby S, Paudel KR, et al. Role of oxidative stress in the pathogenesis of COPD. Minerva Med, 2022, 113(3):370-404. doi:10.23736/S0026-4806.22.07972-1.
pmid: 35142479 |
[46] | Harmon AC, Noël A, Subramanian B, et al. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol, 2021, 321(4):H667-H683. doi:10.1152/ajpheart.00725.2020. |
[47] |
Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest, 2013, 144(1):266-273. doi:10.1378/chest.12-2664.
pmid: 23880677 |
[48] | Fuschi P, Carrara M, Voellenkle C, et al. Central role of the p 53 pathway in the noncoding-RNA response to oxidative stress. Aging, 2017, 9(12):2559-2586. doi:10.18632/aging. |
[49] | Kim C, Kang D, Lee E, et al. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Sene-scence, and Age-Related Diseases. Oxid Med Cell Longev, 2017, 2017:2062384. doi:10.1155/2017/2062384. |
[50] |
Ravasi T, Suzuki H, Pang KC, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res, 2006, 16(1):11-19. doi:10.1101/gr.4200206.
pmid: 16344565 |
[51] | Song H, Jiang L, Yang W, et al. Cryptotanshinone alleviates lipopolysaccharide and cigarette smoke-induced chronic obstructive pulmonary disease in mice via the Keap1/Nrf2 axis. Biomed Pharmacother, 2023, 165:115105. doi:10.1016/j.biopha.2023.115105. |
[52] |
Yamada K, Asai K, Nagayasu F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med, 2016, 16:27. doi:10.1186/s12890-016-0189-1.
pmid: 26861788 |
[53] | Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol, 2013, 49(2):204-211. doi:10.1165/rcmb.2013-0159RC. |
[54] | Liu TW, Liu F, Kang J. Let-7b-5p is involved in the response of endoplasmic reticulum stress in acute pulmonary embolism through upregulating the expression of stress-associated endoplasmic reticulum protein 1. IUBMB Life, 2020, 72(8):1725-1736. doi:10.1002/iub.2306. |
[55] | Wang Y, Chen J, Chen W, et al. LINC00987 Ameliorates COPD by Regulating LPS-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Autophagy Through Let-7b-5p/SIRT1 Axis. Int J Chron Obstruct Pulmon Dis, 2020, 15:3213-3225. doi:10.2147/COPD.S276429. |
[56] | Zhu K, Li Y, Deng C, et al. Significant association of PKM2 and NQO1 proteins with poor prognosis in breast cancer. Pathol Res Pract, 2020, 216(11):153173. doi:10.1016/j.prp.2020.153173. |
[57] | Shahdoust M, Hajizadeh E, Mozdarani H, et al. Finding genes discriminating smokers from non-smokers by applying a growing self-organizing clustering method to large airway epithelium cell microarray data. Asian Pac J Cancer Prev, 2013, 14(1):111-116. doi:10.7314/apjcp.2013.14.1.111. |
[58] | Zhang H, Guan R, Zhang Z, et al. LncRNA Nqo1-AS 1 Attenuates Cigarette Smoke-Induced Oxidative Stress by Upregulating its Natural Antisense Transcript Nqo1. Front Pharmacol, 2021, 12:729062. doi:10.3389/fphar.2021.729062. |
[59] | Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J, 2021, 40(5):e106700. doi:10.15252/embj.2020106700. |
[60] |
Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform, 2016, 17(1): 106-116. doi:10.1093/bib/bbv031.
pmid: 26041786 |
[61] |
Sauler M, Bazan IS, Lee PJ. Cell Death in the Lung: The Apoptosis-Necroptosis Axis. Annu Rev Physiol, 2019, 81:375-402. doi:10.1146/annurev-physiol-020518-114320.
pmid: 30485762 |
[62] |
Bodas M, Min T, Vij N. Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis, 2015, 20(5):725-739. doi:10.1007/s10495-015-1098-0.
pmid: 25638276 |
[63] | Long YJ, Liu XP, Chen SS, et al. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res, 2018, 19(1):21. doi:10.1186/s12931-018-0722-2. |
[64] |
Thomsen M, Ingebrigtsen TS, Marott JL, et al. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA, 2013, 309(22):2353-2361. doi:10.1001/jama.2013.5732.
pmid: 23757083 |
[65] | Sun Y, An N, Li J, et al. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. Cell Biochem, 2019, 120(4):6223-6236. doi:10.1002/jcb.27910. |
[66] | Petit A, Knabe L, Khelloufi K, et al. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI 3 Signaling. Am J Respir Cell Mol Biol, 2019, 61(4):501-511. doi:10.1165/rcmb.2018-0228OC. |
[67] |
Pace E, Di Vincenzo S, Di Salvo E, et al. MiR-21 upregulation increases IL-8 expression and tumorigenesis program in airway epithelial cells exposed to cigarette smoke. J Cell Physiol, 2019, 234(12):22183-22194. doi:10.1002/jcp.28786.
pmid: 31054160 |
[68] | Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother, 2019, 118:109129. doi:10.1016/j.biopha.2019.109129. |
[69] | Bi H, Wang G, Li Z, et al. Long Noncoding RNA (lncRNA) Maternally Expressed Gene 3 (MEG3) Participates in Chronic Obstructive Pulmonary Disease through Regulating Human Pulmonary Microvascular Endothelial Cell Apoptosis. Med Sci Monit, 2020, 26:e920793. doi:10.12659/MSM.920793. |
[70] | Song B, Ye L, Wu S, et al. Long non-coding RNA MEG 3 regulates CSE-induced apoptosis and inflammation via regulating miR-218 in 16HBE cells. Biochem Biophys Res Commun, 2020, 521(2):368-374. doi:10.1016/j.bbrc.2019.10.135. |
[71] | Maarouf M, Chen B, Chen Y, et al. Identification of lncRNA-155 encoded by MIR155HG as a novel regulator of innate immunity against influenza A virus infection. Cell Microbiol, 2019, 21(8):e13036. doi:10.1111/cmi.13036. |
[72] | Song J, Wang Q, Zong L. LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128-5p/BRD4 axis. Biosci Rep, 2020, 40(3):BSR20192567. doi:10.1042/BSR20192567. |
[73] | Fu T, Tian H, Rong H, et al. LncRNA PVT1 induces apoptosis and inflammatory response of bronchial epithelial cells by regulating miR-30b-5p/BCL2L11 axis in COPD. Genes Environ, 2023, 45(1):24. doi:10.1186/s41021-023-00283-4. |
[1] | Peng Maocuo, Xie Jungang. Research progress on immune cells in chronic obstructive pulmonary disease complicated with cardiovascular disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 179-185. |
[2] | Cao Hong, Qian Bing, Wu Jinju. Current situation of tuberculosis epidemic in schools and research progress in prevention and control [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 88-92. |
[3] | Dai Zhongshang, Zhong Yanjun, Chen Yan. Research progress on chronic obstructive pulmonary disease with bronchiectasis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 499-505. |
[4] | Guo Jing, Lou Nannan, Li Jialin, Zhang Hua, Ma Xiang. Research progress of chest tightness variant asthma and comparison with typical asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 413-418. |
[5] | Ruan Shujin, Zeng Jian, Chen Jingfang, Wang Xiufen, Liu Linlin, Jiang Youli, Li Mengjun. Research progress on tuberculosis patients treatment adherence: current status, influencing factors, and intervention measures [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 419-424. |
[6] | Feng Yi, Chang Qing, Li Feng. Research progress of combined pulmonary fibrosis and emphysema [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 425-431. |
[7] | Yuan Lirong, Li Shuhua, Cui Xiaohong, Pei Junli, Gong Qiaoqiao. Research progress of nurses emergency training for nursing emergencies in public health [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 235-239. |
[8] | Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin. Research progress of targeting bronchial epithelium in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 153-157. |
[9] | Hu Tingting, Chang Chun. The role of ceramide and ceramide synthetase in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 164-168. |
[10] | Ren Tantan, Zhan Senlin, Wang Yuxiang, Yu Hong, Zheng Junfeng, Yang Min, Deng Guofang, Zhang Peize. Clinical features and literature review of active tuberculosis associated with PD-1/PD-L1 pathway inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 27-32. |
[11] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[12] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[13] | Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 415-419. |
[14] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[15] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||