Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (2): 153-157.doi: 10.19983/j.issn.2096-8493.20230021
• Review Articles • Previous Articles Next Articles
Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin()
Received:
2023-01-16
Online:
2023-04-20
Published:
2023-04-07
Contact:
Zhao Haijin, Email: Supported by:
CLC Number:
Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin. Research progress of targeting bronchial epithelium in asthma[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(2): 153-157. doi: 10.19983/j.issn.2096-8493.20230021
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20230021
[1] |
Gohy S, Hupin C, Ladjemi MZ, et al. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy, 2020, 50(2): 135-146. doi:10.1111/cea.13539.
doi: 10.1111/cea.13539 pmid: 31746062 |
[2] |
Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy, 2020, 75(8):1902-1917. doi:10.1111/all.14421.
doi: 10.1111/all.14421 URL |
[3] |
Papi A, Brightling C, Pedersen SE, et al. Asthma. Lancet, 2018, 391(10122):783-800. doi:10.1016/S0140-6736(17)33311-1.
doi: S0140-6736(17)33311-1 pmid: 29273246 |
[4] |
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma. J Allergy Clin Immunol, 2020, 145(6): 1499-1509. doi:10.1016/j.jaci.2020.04.010.
doi: S0091-6749(20)30553-4 pmid: 32507228 |
[5] |
Leino MS, Loxham M, Blume C, et al. Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors. PLoS One, 2013, 8(8): e71278. doi:10.1371/journal.pone.0071278.
doi: 10.1371/journal.pone.0071278 URL |
[6] |
Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy, 2014, 44(5): 620-630. doi:10.1111/cea.12296.
doi: 10.1111/cea.12296 pmid: 24612268 |
[7] |
Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Respir J, 2020, 56(5): 2000260. doi:10.1183/13993003.00260-2020.
doi: 10.1183/13993003.00260-2020 URL |
[8] |
Larose MC, Chakir J, Archambault AS, et al. Correlation between CCL 26 production by human bronchial epithelial cells and airway eosinophils: Involvement in patients with severe eosinophilic asthma. J Allergy Clin Immunol, 2015, 136(4): 904-913. doi:10.1016/j.jaci.2015.02.039.
doi: 10.1016/j.jaci.2015.02.039 URL |
[9] |
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest, 2019, 129(4):1463-1474. doi:10.1172/JCI124608.
doi: 10.1172/JCI124608 pmid: 30776025 |
[10] |
Calvén J, Ax E, Rådinger M. The Airway Epithelium-A Central Player in Asthma Pathogenesis. Int J Mol Sci, 2020, 21(23): 8907. doi:10.3390/ijms21238907.
doi: 10.3390/ijms21238907 URL |
[11] |
Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol, 2019, 56(2):219-233. doi:10.1007/s12016-018-8712-1.
doi: 10.1007/s12016-018-8712-1 |
[12] |
Hong H, Liao S, Chen F, et al. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy, 2020, 75(11):2794-2804. doi:10.1111/all.14526.
doi: 10.1111/all.14526 URL |
[13] |
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, et al. The central role of IL-33/IL-1RL 1 pathway in asthma: From patho-genesis to intervention. Pharmacol Ther, 2021, 225: 107847. doi:10.1016/j.pharmthera.2021.107847.
doi: 10.1016/j.pharmthera.2021.107847 URL |
[14] |
Borowczyk J, Shutova M, Brembilla NC, et al. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol, 2021, 148(1):40-52. doi:10.1016/j.jaci.2020.12.628.
doi: 10.1016/j.jaci.2020.12.628 pmid: 33485651 |
[15] |
Samitas K, Zervas E, Gaga M. T2-low asthma: current approach to diagnosis and therapy. Curr Opin Pulm Med, 2017, 23(1): 48-55. doi:10.1097/MCP.0000000000000342.
doi: 10.1097/MCP.0000000000000342 pmid: 27798418 |
[16] |
Yang Y, Jia M, Ou Y, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. Clin Respir J, 2021, 15(10):1027-1045. doi:10.1111/crj.13407.
doi: 10.1111/crj.13407 URL |
[17] |
Chang Y, Al-Alwan L, Risse PA, et al. Th17-associated cytokines promote human airway smooth muscle cell proliferation. FASEB J, 2012, 26(12): 5152-5160. doi:10.1096/fj.12-208033.
doi: 10.1096/fj.12-208033 pmid: 22898922 |
[18] |
Lipworth B, Chan R, Kuo C. Systemic IL-6 and Severe Asthma. Am J Respir Crit Care Med, 2020, 202(9):1324-1325. doi:10.1164/rccm.202006-2354LE.
doi: 10.1164/rccm.202006-2354LE |
[19] |
Kato A. Group 2 Innate Lymphoid Cells in Airway Diseases. Chest, 2019, 156(1):141-149. doi:10.1016/j.chest.2019.04.101.
doi: S0012-3692(19)31023-2 pmid: 31082387 |
[20] |
Bonser LR, Erle DJ. The airway epithelium in asthma. Adv Immunol, 2019, 142:1-34. doi:10.1016/bs.ai.2019.05.001.
doi: S0065-2776(19)30015-X pmid: 31296301 |
[21] |
Xu J, Meng Y, Jia M, et al. Epithelial expression and role of secreted STC 1 on asthma airway hyperresponsiveness through calcium channel modulation. Allergy, 2021, 76(8):2475-2487. doi:10.1111/all.14727.
doi: 10.1111/all.14727 URL |
[22] |
Raundhal M, Morse C, Khare A, et al. High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest, 2015, 125(8): 3037-3050. doi:10.1172/JCI80911.
doi: 10.1172/JCI80911 pmid: 26121748 |
[23] |
Iosifidis T, Garratt LW, Coombe DR, et al. Airway epithelial repair in health and disease: Orchestrator or simply a player. Respirology, 2016, 21(3): 438-448. doi:10.1111/resp.12731.
doi: 10.1111/resp.12731 pmid: 26804630 |
[24] |
Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med, 2012, 18(5):684-692. doi:10.1038/nm.2737.
doi: 10.1038/nm.2737 pmid: 22561832 |
[25] |
Gauvreau GM, Sehmi R, Ambrose CS, et al. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets, 2020, 24(8): 777-792. doi:10.1080/14728222.2020.1783242.
doi: 10.1080/14728222.2020.1783242 URL |
[26] |
Iosifidis T, Sutanto EN, Buckley AG, et al. Aberrant cell migration contributes to defective airway epithelial repair in childhood wheeze. JCI Insight, 2020, 5(7): e133125. doi:10.1172/jci.insight.133125.
doi: 10.1172/jci.insight.133125 URL |
[27] |
Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast. Exp Lung Res, 2018, 44(6): 288-301. doi:10.1080/01902148.2018.1536175.
doi: 10.1080/01902148.2018.1536175 pmid: 30428724 |
[28] | Global Asthma Network. The global asthma report 2018. Paris: Global Asthma Network, 2018. |
[29] |
Li X, Hastie AT, Hawkins GA, et al. eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS-identified asthma genes. Allergy, 2015, 70(10): 1309-1318. doi:10.1111/all.12683.
doi: 10.1111/all.12683 pmid: 26119467 |
[30] |
Clifford RL, Jones MJ, MacIsaac JL, et al. Inhalation of diesel exhaust and allergen alters human bronchial epithelium DNA methylation. J Allergy Clin Immunol, 2017, 139(1):112-121. doi:10.1016/j.jaci.2016.03.046.
doi: S0091-6749(16)30273-1 pmid: 27321436 |
[31] |
Heijink I, van Oosterhout A, Kliphuis N, et al. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells. Thorax, 2014, 69(1): 5-13. doi:10.1136/thoraxjnl-2013-203520.
doi: 10.1136/thoraxjnl-2013-203520 pmid: 23980116 |
[32] |
To Y, Ito K, Kizawa Y, et al. Targeting phosphoinositide-3-kinase-delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2010, 182(7): 897-904. doi:10.1164/rccm.200906-0937OC.
doi: 10.1164/rccm.200906-0937OC URL |
[33] |
Corren J, Parnes JR, Wang L, et al. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med, 2017, 377(10): 936-946. doi:10.1056/NEJMoa1704064.
doi: 10.1056/NEJMoa1704064 URL |
[34] |
Corren J, Garcia Gil E, Griffiths JM, et al. Tezepelumab improves patient-reported outcomes in patients with severe, uncontrolled asthma in PATHWAY. Ann Allergy Asthma Immunol, 2021, 126(2):187-193. doi:10.1016/j.anai.2020.10.008.
doi: 10.1016/j.anai.2020.10.008 URL |
[35] |
Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med, 2021, 384(19):1800-1809. doi:10.1056/NEJMoa2034975.
doi: 10.1056/NEJMoa2034975 URL |
[36] | Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Fontana: Global Initiative for Asthma, 2022. |
[37] |
Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N Engl J Med, 2021, 385(18): 1656-1668. doi:10.1056/NEJMoa2024257.
doi: 10.1056/NEJMoa2024257 URL |
[38] |
Busse WW, Holgate S, Kerwin E, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med, 2013, 188(11):1294-1302. doi:10.1164/rccm.201212-2318OC.
doi: 10.1164/rccm.201212-2318OC URL |
[39] |
Huang G, Su J, Zhao W, et al. JNK modulates RAGE/β-catenin signaling and is essential for allergic airway inflammation in asthma. Toxicol Lett, 2021, 336: 57-67. doi:10.1016/j.toxlet.2020.10.002.
doi: 10.1016/j.toxlet.2020.10.002 pmid: 33075463 |
[40] |
Yao L, Zhao H, Tang H, et al. Blockade of β-catenin signaling attenuates toluene diisocyanate-induced experimental asthma. Allergy, 2017, 72(4):579-589. doi:10.1111/all.13045.
doi: 10.1111/all.13045 pmid: 27624805 |
[41] |
Yao L, Zhao H, Tang H, et al. The receptor for advanced glycation end products is required for β-catenin stabilization in a chemical-induced asthma model. Br J Pharmacol, 2016, 173(17): 2600-2613. doi:10.1111/bph.13539.
doi: 10.1111/bph.13539 URL |
[42] |
Yao L, Zhao H, Tang H, et al. Phosphatidylinositol 3-Kinase Mediates β-Catenin Dysfunction of Airway Epithelium in a Toluene Diisocyanate-Induced Murine Asthma Model. Toxicol Sci, 2015, 147(1):168-177. doi:10.1093/toxsci/kfv120.
doi: 10.1093/toxsci/kfv120 pmid: 26089345 |
[43] |
Peng X, Huang M, Zhao W, et al. RAGE mediates airway inflammation via the HDAC 1 pathway in a toluene diisocyanate-induced murine asthma model. BMC Pulm Med, 2022, 22(1):61. doi:10.1186/s12890-022-01832-3.
doi: 10.1186/s12890-022-01832-3 |
[44] |
Lafkas D, Shelton A, Chiu C, et al. Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 2015, 528(7580):127-131. doi:10.1038/nature15715.
doi: 10.1038/nature15715 |
[45] |
Harb H, Chatila TA. Recent patents in allergy and immunology: Method for treating asthma or allergic disease via anti-Notch4 mAb. Allergy, 2022, 77(7): 2260-2261. doi:10.1111/all.15317.
doi: 10.1111/all.15317 URL |
[46] |
Steelant B, Seys SF, Boeckxstaens G, et al. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinology, 2016, 54(3):195-205. doi:10.4193/Rhino15.376.
doi: 10.4193/Rhin15.376 pmid: 27316042 |
[47] |
Wawrzyniak P, Wawrzyniak M, Wanke K, et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J Allergy Clin Immunol, 2017, 139(1): 93-103. doi:10.1016/j.jaci.2016.03.050.
doi: S0091-6749(16)30277-9 pmid: 27312821 |
[1] | Wang Zhongzhao, Tang Hao. Research progress of airway remodeling mechanism in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 158-163. |
[2] | Hu Tingting, Chang Chun. The role of ceramide and ceramide synthetase in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 164-168. |
[3] | Ren Tantan, Zhan Senlin, Wang Yuxiang, Yu Hong, Zheng Junfeng, Yang Min, Deng Guofang, Zhang Peize. Clinical features and literature review of active tuberculosis associated with PD-1/PD-L1 pathway inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 27-32. |
[4] | Yan Jinyan, Li Xiaomin, Ma Xiang. Research progress on the mechanism of there relationship between asthma and pertussisin children [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 78-84. |
[5] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[6] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[7] | Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 415-419. |
[8] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[9] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
[10] | Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 320-324. |
[11] | Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 328-333. |
[12] | Zhou Yinan, Zhu Huili. Research progress of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 338-342. |
[13] | ZHANG Yan-kun, GUAN Yan, ZHAI Jing-jie, HAN Zhao. Application of anti-neovascular endothelial growth factor therapy in tuberculous chorioretinopathy: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 222-226. |
[14] | SI Fen, WANG Lin. Research progress on pulmonary rehabilitation care of patients with chronic obstructive pulmonary disease in stable stage [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 242-246. |
[15] | JIANG Ge-ge, LIANG Yuan, DU Li-na, WU Jian-lin. Research progress of CT roundness measurement in evaluating the invasiveness of GGN-like lung adenocarcinoma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 158-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||