Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (5): 415-419.doi: 10.19983/j.issn.2096-8493.20220089
• Review Articles • Previous Articles Next Articles
Liu Yuanyuan1, Li Lu2, Wu Tuoya3, Lu Jie1()
Received:
2022-05-13
Online:
2022-10-20
Published:
2022-10-14
Contact:
Lu Jie
E-mail:lujiebch@163.com
Supported by:
CLC Number:
Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(5): 415-419. doi: 10.19983/j.issn.2096-8493.20220089
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220089
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] |
Tornheim JA, Dooley KE. The Global Landscape of Tuberculosis Therapeutics. Annu Rev Med, 2019, 70:105-120. doi: 10.1146/annurev-med-040717-051150.
doi: 10.1146/annurev-med-040717-051150 pmid: 30403551 |
[3] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3):e28-e37. doi: 10.1016/s1473-3099(19)30625-5.
doi: 10.1016/s1473-3099(19)30625-5 |
[4] |
Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev, 2012, 36(3):514-532. doi: 10.1111/j.1574-6976.2012.00331.x.
doi: 10.1111/j.1574-6976.2012.00331.x pmid: 22320122 |
[5] |
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008, 105(11):4376-4380. doi: 10.1073/pnas.0711159105.
doi: 10.1073/pnas.0711159105 pmid: 18334639 |
[6] |
Saini NK, Sinha R, Singh P, et al. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner. Microb Pathog, 2016, 100:43-50. doi: 10.1016/j.micpath.2016.08.038.
doi: 10.1016/j.micpath.2016.08.038 URL |
[7] |
Casali N, Riley LW. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics, 2007, 8:60. doi: 10.1186/1471-2164-8-60.
doi: 10.1186/1471-2164-8-60 pmid: 17324287 |
[8] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL |
[9] | EMBL-EBI, PIR, SIB, Uniprot: The Universal Protein Resourse[DB/OL]. [2022-03-12]. http://www.uniport.org. |
[10] |
Wu CH, Apweiler R, Bairoch A, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res, 2006, 34(Database issue):D187-191. doi: 10.1093/nar/gkj161.
doi: 10.1093/nar/gkj161 pmid: 16381842 |
[11] |
Pasricha R, Chandolia A, Ponnan P, et al. Single nucleotide polymorphism in the genes of mce1 and mce 4 operons of Mycobacterium tuberculosis: analysis of clinical isolates and standard reference strains. BMC Microbiol, 2011, 11:41. doi: 10.1186/1471-2180-11-41.
doi: 10.1186/1471-2180-11-41 pmid: 21345183 |
[12] |
Olson ER. Influence of pH on bacterial gene expression. Mol Microbiol, 1993, 8(1):5-14. doi: 10.1111/j.1365-2958.1993.tb01198.x.
doi: 10.1111/j.1365-2958.1993.tb01198.x pmid: 8388532 |
[13] |
Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe, 2007, 2(5):352-364. doi: 10.1016/j.chom.2007.09.006.
doi: 10.1016/j.chom.2007.09.006 pmid: 18005756 |
[14] |
Rathor N, Garima K, Sharma NK, et al. Expression profile of mce 4 operon of Mycobacterium tuberculosis following environmental stress. Int J Mycobacteriol, 2016, 5(3):328-332. doi: 10.1016/j.ijmyco.2016.08.004.
doi: S2212-5531(16)30069-3 pmid: 27847019 |
[15] |
Rathor N, Chandolia A, Saini NK, et al. An insight into the regulation of mce 4 operon of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2013, 93(4):389-397. doi: 10.1016/j.tube.2013.03.007.
doi: 10.1016/j.tube.2013.03.007 URL |
[16] |
Griffin JE, Gawronski JD, Dejesus MA, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 2011, 7(9):e1002251. doi: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251 |
[17] |
Mohn WW, van der Geize R, Stewart GR, et al. The actinobacterial mce 4 locus encodes a steroid transporter. J Biol Chem, 2008, 283(51):35368-35374. doi: 10.1074/jbc.M805496200.
doi: 10.1074/jbc.M805496200 URL |
[18] |
Van der Geize R, Yam K, Heuser T, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A, 2007, 104(6):1947-1952. doi: 10.1073/pnas.0605728104.
doi: 10.1073/pnas.0605728104 URL |
[19] |
Klepp LI, Forrellad MA, Osella AV, et al. Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect, 2012, 14(7-8):590-599. doi: 10.1016/j.micinf.2012.01.007.
doi: 10.1016/j.micinf.2012.01.007 URL |
[20] |
Garcia-Fernandez J, Papavinasasundaram K, Galan B, et al. Molecular and functional analysis of the mce 4 operon in Mycobacterium smegmatis. Environ Microbiol, 2017, 19(9):3689-3699. doi: 10.1111/1462-2920.13869.
doi: 10.1111/1462-2920.13869 URL |
[21] |
McClean CM, Tobin DM. Early cell-autonomous accumulation of neutral lipids during infection promotes mycobacterial growth. PLoS One, 2020, 15(5):e0232251. doi: 10.1371/journal.pone.0232251.
doi: 10.1371/journal.pone.0232251 |
[22] |
Alonso MN, Malaga W, Mc Neil M, et al. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol, 2020, 171(5-6):203-210. doi: 10.1016/j.resmic.2020.04.001.
doi: 10.1016/j.resmic.2020.04.001 URL |
[23] |
Fenn K, Wong CT, Darbari VC. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Front Mol Biosci, 2019, 6:149. doi: 10.3389/fmolb.2019.00149.
doi: 10.3389/fmolb.2019.00149 URL |
[24] |
Kelkar DS, Kumar D, Kumar P, et al. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrome-try. Mol Cell Proteomics, 2011, 10(12):M111.011627. doi: 10.1074/mcp.M111.011445.
doi: 10.1074/mcp.M111.011445 |
[25] |
Khan S, Khan P, Hassan MI, et al. Protein stability: Determination of structure and stability of the transmembrane protein Mce4A from M.tuberculosis in membrane-like environment. Int J Biol Macromol, 2019, 126:488-495. doi: 10.1016/j.ijbiomac.2018.12.183.
doi: 10.1016/j.ijbiomac.2018.12.183 URL |
[26] |
吴姝, 伊正君, 付玉荣. 结核分枝杆菌Mce4A蛋白结构与功能的生物信息学分析. 中国病原生物学杂志, 2018, 13(7):704-708. doi: 10.13350/j.cjpd.180706.
doi: 10.13350/j.cjpd.180706 |
[27] |
Khan S, Khan FI, Mohammad T, et al. Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: A combined spectroscopic and molecular dynamic simulation studies. Int J Biol Macromol, 2018, 111:548-560. doi: 10.1016/j.ijbiomac.2017.12.160.
doi: S0141-8130(17)33808-4 pmid: 29329815 |
[28] |
Rank L, Herring LE, Braunstein M. Evidence for the Mycobacterial Mce4 Transporter Being a Multiprotein Complex. J Bacteriol, 2021, 203(10):e00685-20. doi: 10.1128/JB.00685-20.
doi: 10.1128/JB.00685-20 |
[29] |
Saini NK, Sharma M, Chandolia A, et al. Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol, 2008, 8:200. doi: 10.1186/1471-2180-8-200.
doi: 10.1186/1471-2180-8-200 URL |
[30] |
Sinha R, Singh P, Saini NK, et al. Methyl-accepting chemotaxis like Rv3499c (Mce4A) protein in Mycobacterium tuberculosis H37Rv mediates cholesterol-dependent survival. Tuberculosis (Edinb), 2018, 109:52-60. doi: 10.1016/j.tube.2018.01.004.
doi: 10.1016/j.tube.2018.01.004 URL |
[31] |
Singh P, Sinha R, Tyagi G, et al. PDIM and SL1 accumulation in Mycobacterium tuberculosis is associated with mce4A expression. Gene, 2018, 642:178-187. doi: 10.1016/j.gene.2017.09.062.
doi: 10.1016/j.gene.2017.09.062 URL |
[32] |
Xu G, Li Y, Yang J, et al. Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem, 2007, 302(1-2):1-7. doi: 10.1007/s11010-006-9395-0.
doi: 10.1007/s11010-006-9395-0 URL |
[33] |
He L, Zhou X, Yin X, et al. Comparative study of the growth and survival of recombinant Mycobacterium smegmatis expressing Mce4A and Mce4E from Mycobacterium bovis. DNA Cell Biol, 2015, 34(2):125-132. doi: 10.1089/dna.2014.2487.
doi: 10.1089/dna.2014.2487 URL |
[34] |
Voskuil MI, Schnappinger D, Visconti KC, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med, 2003, 198(5):705-713. doi: 10.1084/jem.20030205.
doi: 10.1084/jem.20030205 pmid: 12953092 |
[35] |
Rojas M, Olivier M, Gros P, et al. TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol, 1999, 162(10):6122-6131.
pmid: 10229855 |
[36] |
MacMicking JD, North RJ, LaCourse R, et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A, 1997, 94(10):5243-5248. doi: 10.1073/pnas.94.10.5243.
doi: 10.1073/pnas.94.10.5243 pmid: 9144222 |
[37] |
Ma W, Jin W, He X, et al. Mycobacterium tuberculosis Induced Osteoblast Dysregulation Involved in Bone Destruction in Spinal Tuberculosis. Front Cell Infect Microbiol, 2022, 12:780272. doi: 10.3389/fcimb.2022.780272.
doi: 10.3389/fcimb.2022.780272 |
[38] |
Khan S, Islam A, Hassan MI, et al. Purification and structural characterization of Mce4A from Mycobacterium tuberculosis. Int J Biol Macromol, 2016, 93(Pt A):235-241. doi: 10.1016/j.ijbiomac.2016.06.059.
doi: 10.1016/j.ijbiomac.2016.06.059 URL |
[39] |
Goren MB, Brokl O, Schaefer WB. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun, 1974, 9(1):150-158. doi: 10.1128/iai.9.1.150-158.1974.
doi: 10.1128/iai.9.1.150-158.1974 pmid: 4271720 |
[40] |
Camacho LR, Constant P, Raynaud C, et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem, 2001, 276(23):19845-19854. doi: 10.1074/jbc.M100662200.
doi: 10.1074/jbc.M100662200 pmid: 11279114 |
[41] |
Madan R, Pandit K, Bhati L, et al. Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates. Microb Pathog, 2021, 157:104996. doi: 10.1016/j.micpath.2021.104996.
doi: 10.1016/j.micpath.2021.104996 |
[42] |
Blanco FC, Nunez-Garcia J, Garcia-Pelayo C, et al. Differential transcriptome profiles of attenuated and hypervirulent strains of Mycobacterium bovis. Microbes Infect, 2009, 11(12):956-963. doi: 10.1016/j.micinf.2009.06.006.
doi: 10.1016/j.micinf.2009.06.006 URL |
[43] |
Oftung F, Wiker HG, Deggerdal A, et al. A novel mycobacterial antigen relevant to cellular immunity belongs to a family of secreted lipoproteins. Scand J Immunol, 1997, 46(5):445-451. doi: 10.1046/j.1365-3083.1997.d01-150.x.
doi: 10.1046/j.1365-3083.1997.d01-150.x pmid: 9393626 |
[44] | 徐广贤, 赵德明, 周向梅, 等. 牛结核分枝杆菌 Mce4E蛋白对牛肺泡巨噬细胞 iNOs、TNF-α、IL-6和IL-12表达的影响. 中国农业大学学报, 2007, 12(1):1-6. |
[45] |
Pasricha R, Saini NK, Rathor N, et al. The Mycobacterium tuberculosis recombinant LprN protein of mce 4 operon induces Th-1 type response deleterious to protection in mice. Pathog Dis, 2014, 72(3):188-196. doi: 10.1111/2049-632X.12200.
doi: 10.1111/2049-632X.12200 pmid: 24989028 |
[46] |
Song H, Sandie R, Wang Y, et al. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2008, 88(6):526-544. doi: 10.1016/j.tube.2008.02.004.
doi: 10.1016/j.tube.2008.02.004 URL |
[47] |
Rodriguez DC, Ocampo M, Varela Y, et al. Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis, 2015, 73(3): ftu020. doi: 10.1093/femspd/ftu020.
doi: 10.1093/femspd/ftu020 |
[48] |
Qu Z, Zhou J, Zhou Y, et al. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1beta immune pathway. Sci Adv, 2020, 6(43): eaba4733. doi: 10.1126/sciadv.aba4733.
doi: 10.1126/sciadv.aba4733 |
[49] |
Yang H, Wang F, Guo X, et al. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov, 2021, 7(1):90. doi: 10.1038/s41421-021-00301-1.
doi: 10.1038/s41421-021-00301-1 pmid: 34608123 |
[1] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[2] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[3] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
[4] | Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 320-324. |
[5] | Zhou Yinan, Zhu Huili. Research progress of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 338-342. |
[6] | ZHANG Yan-kun, GUAN Yan, ZHAI Jing-jie, HAN Zhao. Application of anti-neovascular endothelial growth factor therapy in tuberculous chorioretinopathy: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 222-226. |
[7] | SI Fen, WANG Lin. Research progress on pulmonary rehabilitation care of patients with chronic obstructive pulmonary disease in stable stage [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 242-246. |
[8] | JIANG Ge-ge, LIANG Yuan, DU Li-na, WU Jian-lin. Research progress of CT roundness measurement in evaluating the invasiveness of GGN-like lung adenocarcinoma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 158-161. |
[9] | REN Jing-juan, ZHAO Yan-lin. Research progress of music therapy in rehabilitation treatment of lung diseases [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 162-165. |
[10] | WU Di, LIN Fen, CHEN Xiao-hong, LIN You-fei, HUANG Ming-xiang, CHEN Li-zhou. Convalescent plasma therapy for two cases of rapid progressing severe COVID-19 and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 33-43. |
[11] | LUO Li-juan, CHEN Yan. Research progress of animal models of emphysema [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 60-64. |
[12] | LIU Hui-min, TIAN Yao, BEI Cheng-li, FU Man-jiao. Application and prospect of immunological detection technology for active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 70-74. |
[13] | YANG Kui, CHEN Wei. Advances about screening and preventive treatment of Mycobacterium tuberculosis latent infection in students [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 361-365. |
[14] | LIU Xin, WU Qian-hong, CHEN Qi-liang, LI Jun-xiao, XU Jun-li, GUO Le. Rare angiosarcoma of thoracic soft tissue: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 210-215. |
[15] | SONG Yi-yan, CHEN Jie, LI Fang-hua, LI Ruo-nan, ZHAO Jing, YU Da-wei, SONG Hua-feng, XU Jun-chi, WU Min-juan, XU Ping. Analysis of 44 drug resistance patients with tuberculosis and received repeated treatment [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 239-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||