Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (4): 320-324.doi: 10.19983/j.issn.2096-8493.20220014
• Review Articles • Previous Articles Next Articles
Received:
2022-02-10
Online:
2022-08-20
Published:
2022-08-16
Contact:
Li Feng
E-mail:dr_lif08@126.com
Supported by:
CLC Number:
Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(4): 320-324. doi: 10.19983/j.issn.2096-8493.20220014
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220014
[1] |
Ravimohan S, Kornfeld H, Weissman D, et al. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev, 2018, 27(147): 170077. doi: 10.1183/16000617.0077-2017.
doi: 10.1183/16000617.0077-2017 URL |
[2] |
Liu Q, Gao J, Luo B, et al. Prediction model for death in patients with pulmonary tuberculosis accompanied by respiratory failure in ICU: retrospective study. Ann Palliat Med, 2020, 9(5): 2731-2740. doi: 10.21037/apm-20-182.
doi: 10.21037/apm-20-182 URL |
[3] |
Kang NM, Zhang N, Luo BJ, et al. Sequential non-invasive following short-term invasive mechanical ventilation in the treatment of tuberculosis with respiratory failure: a randomized controlled study. BMC Pulm Med, 2021, 21(1): 203. doi: 10.1186/s12890-021-01563-x.
doi: 10.1186/s12890-021-01563-x URL |
[4] |
Kim S, Kim H, Kim WJ, et al. Mortality and predictors in pulmonary tuberculosis with respiratory failure requiring mechanical ventilation. Int J Tuberc Lung Dis, 2016, 20(4): 524-529. doi: 10.5588/ijtld.15.0690.
doi: 10.5588/ijtld.15.0690 pmid: 26970163 |
[5] |
Rhee CK, Yoo KH, Lee JH, et al. Clinical characteristics of patients with tuberculosis-destroyed lung. Int J Tuberc Lung Dis, 2013, 17(1): 67-75. doi: 10.5588/ijtld.12.0351.
doi: 10.5588/ijtld.12.0351 pmid: 23232006 |
[6] |
Yang B, Choi H, Shin SH, et al. Association of Ventilatory Disorders with Respiratory Symptoms, Physical Activity, and Quality of Life in Subjects with Prior Tuberculosis: A National Database Study in Korea. J Pers Med, 2021, 11(7):678. doi: 10.3390/jpm11070678.
doi: 10.3390/jpm11070678 URL |
[7] |
Amaral AFS, Coton S, Kato B, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J, 2015, 46(4): 1104-1112. doi: 10.1183/13993003.02325-2014.
doi: 10.1183/13993003.02325-2014 pmid: 26113680 |
[8] |
Lee PL, Jerng JS, Chang YL, et al. Patient mortality of active pulmonary tuberculosis requiring mechanical ventilation. Eur Respir J, 2003, 22(1): 141-147. doi: 10.1183/09031936.03.00038703.
doi: 10.1183/09031936.03.00038703 pmid: 12882464 |
[9] |
Shah M, Reed C. Complications of tuberculosis. Curr Opin Infect Dis, 2014, 27(5): 403-410. doi: 10.1097/QCO.0000000000000090.
doi: 10.1097/QCO.0000000000000090 URL |
[10] |
Kim YJ, Pack KM, Jeong E, et al. Pulmonary tuberculosis with acute respiratory failure. Eur Respir J, 2008, 32(6): 1625-1630. doi: 10.1183/09031936.00070907.
doi: 10.1183/09031936.00070907 pmid: 18614559 |
[11] |
Madansein R, Parida S, Padayatchi N, et al. Surgical treatment of complications of pulmonary tuberculosis, including drug-resistant tuberculosis. Int J Infect Dis, 2015, 32: 61-67. doi: 10.1016/j.ijid.2015.01.019.
doi: 10.1016/j.ijid.2015.01.019 pmid: 25809758 |
[12] |
Burke RM, Gupta Wright A. Diagnosing Tuberculosis in People With Advanced Human Immunodeficiency Virus: More Is Needed. Clin Infect Dis, 2021, 73(4): e878-e879. doi: 10.1093/cid/ciab184.
doi: 10.1093/cid/ciab184 |
[13] |
Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb), 2011, 91(6): 497-509. doi: 10.1016/j.tube.2011.03.007.
doi: 10.1016/j.tube.2011.03.007 URL |
[14] |
Russell DG, Cardona PJ, Kim MJ, et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 2009, 10(9): 943-948. doi: 10.1038/ni.1781.
doi: 10.1038/ni.1781 pmid: 19692995 |
[15] |
Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol, 2013, 35(5): 563-583. doi: 10.1007/s00281-013-0388-2.
doi: 10.1007/s00281-013-0388-2 pmid: 23864058 |
[16] |
Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol, 2011, 186(12): 7110-7119. doi: 10.4049/jimmunol.1100001.
doi: 10.4049/jimmunol.1100001 pmid: 21555529 |
[17] |
Pichugin AV, Yan BS, Sloutsky A, et al. Dominant role of the sst 1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol, 2009, 174(6): 2190-2201. doi: 10.2353/ajpath.2009.081075.
doi: 10.2353/ajpath.2009.081075 URL |
[18] |
Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb), 2009, 89(1): 29-37. doi: 10.1016/j.tube.2008.09.009.
doi: 10.1016/j.tube.2008.09.009 URL |
[19] |
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol, 2012, 189(6): 2689-2695. doi: 10.4049/jimmunol.1201719.
doi: 10.4049/jimmunol.1201719 URL |
[20] |
Guyot N, Wartelle J, Malleret L, et al. Unopposed cathepsin G, neutrophil elastase, and proteinase 3 cause severe lung damage and emphysema. Am J Pathol, 2014, 184(8): 2197-2210. doi: 10.1016/j.ajpath.2014.04.015.
doi: 10.1016/j.ajpath.2014.04.015 URL |
[21] |
Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev, 2011, 24(2): 351-376. doi: 10.1128/CMR.00042-10.
doi: 10.1128/CMR.00042-10 URL |
[22] |
Grosset J. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother, 2003, 47(3): 833-836. doi: 10.1128/AAC.47.3.833-836.2003.
doi: 10.1128/AAC.47.3.833-836.2003 URL |
[23] |
Barry CE, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009, 7(12): 845-855. doi: 10.1038/nrmicro2236.
doi: 10.1038/nrmicro2236 URL |
[24] |
Ketata W, Rekik WK, Ayadi H, et al. Extrapulmonary tuberculosis. Rev Pneumol Clin, 2015, 71(2/3): 83-92. doi: 10.1016/j.pneumo.2014.04.001.
doi: 10.1016/j.pneumo.2014.04.001 URL |
[25] |
Imazu P, Santos JM, Beraldi-Magalhães F, et al. Efficacy and safety of daily treatments for drug-susceptible pulmonary tuberculosis: a systematic review and network meta-analysis. J Pharm Pharmacol, 2022: rgac004. doi: 10.1093/jpp/rgac004.
doi: 10.1093/jpp/rgac004 |
[26] |
Lewinsohn DM, Leonard MK, LoBue PA, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis, 2017, 64(2):111-115.. doi: 10.1093/cid/ciw694.
doi: 10.1093/cid/ciw778 pmid: 28052967 |
[27] |
Ahmed MIM, Ntinginya NE, Kibiki G, et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific CD 4 T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front Immunol, 2018, 9: 2247. doi: 10.3389/fimmu.2018.02247.
doi: 10.3389/fimmu.2018.02247 URL |
[28] |
Smith C, Halse TA, Shea J, et al. Assessing Nanopore Sequencing for Clinical Diagnostics: a Comparison of Next-Generation Sequencing (NGS) Methods for Mycobacterium tuberculosis. J Clin Microbiol, 2020, 59(1):e00583-20.. doi: 10.1128/JCM.00583-20.
doi: 10.1128/JCM.00583-20 |
[29] |
Mondoni M, Repossi A, Carlucci P, et al. Bronchoscopic techniques in the management of patients with tuberculosis. Int J Infect Dis, 2017, 64: 27-37. doi: 10.1016/j.ijid.2017.08.008.
doi: 10.1016/j.ijid.2017.08.008 URL |
[30] |
Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med, 2019, 200(7):e45-e67. doi: 10.1164/rccm.201908-1581ST.
doi: 10.1164/rccm.201908-1581ST |
[31] |
Lange C, Dheda K, Chesov D, et al. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202): 953-966. doi: 10.1016/S0140-6736(19)31882-3.
doi: 10.1016/S0140-6736(19)31882-3 URL |
[32] |
Ejigu DA, Abay SM. N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberc Res Treat, 2020, 2020: 5907839. doi: 10.1155/2020/5907839.
doi: 10.1155/2020/5907839 |
[33] |
Brode SK, Campitelli MA, Kwong JC, et al.The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J, 2017, 50(3):1700. doi: 10.1183/13993003.00037-2017.
doi: 10.1183/13993003.00037-2017 |
[34] |
Choi R, Jeong BH, Koh WJ, et al. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med, 2017, 37(2): 97-107. doi: 10.3343/alm.2017.37.2.97.
doi: 10.3343/alm.2017.37.2.97 URL |
[35] |
Fuentes Padilla P, Martinez G, Vernooij RW, et al. Early enteral nutrition (within 48 hours) versus delayed enteral nutrition (after 48 hours) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev, 2019, 2019(10):CD012340. doi: 10.1002/14651858.CD012340.
doi: 10.1002/14651858.CD012340 |
[36] |
Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition-An ESPEN Consensus Statement. Clin Nutr, 2015, 34(3): 335-340. doi: 10.1016/j.clnu.2015.03.001.
doi: 10.1016/j.clnu.2015.03.001 pmid: 25799486 |
[37] |
España PP, Capelastegui A, Gorordo I, et al. Development and Validation of a Clinical Prediction Rule for Severe Community-acquired Pneumonia. Am J Respir Crit Care Med, 2006, 174(11): 1249-1256. doi: 10.1164/rccm.200602-177OC.
doi: 10.1164/rccm.200602-177OC URL |
[38] |
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23):2526-2533. doi: 10.1001/jama.2012.5669.
doi: 10.1001/jama.2012.5669 pmid: 22797452 |
[39] |
Grieco DL, Maggiore SM, Roca O, et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med, 2021, 47(8): 851-866. doi: 10.1007/s00134-021-06459-2.
doi: 10.1007/s00134-021-06459-2 URL |
[40] |
Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med, 2015, 372(23): 2185-2196. doi: 10.1056/NEJMoa1503326.
doi: 10.1056/NEJMoa1503326 URL |
[41] |
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med, 2020, 46(4): 606-618. doi: 10.1007/s00134-020-05942-6.
doi: 10.1007/s00134-020-05942-6 pmid: 32016537 |
[42] |
Roca O, Caralt B, Messika J, et al. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am J Respir Crit Care Med, 2019, 199(11): 1368-1376. doi: 10.1164/rccm.201803-0589OC.
doi: 10.1164/rccm.201803-0589OC URL |
[43] |
Grieco DL, Menga LS, Eleuteri D, et al. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol, 2019, 85(9): 1014-1023. doi: 10.23736/S0375-9393.19.13418-9.
doi: 10.23736/S0375-9393.19.13418-9 |
[44] |
Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care, 2019, 9(1): 69. doi: 10.1186/s13613-019-0540-9.
doi: 10.1186/s13613-019-0540-9 pmid: 31197492 |
[45] |
Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care, 2016, 20(1): 132. doi: 10.1186/s13054-016-1304-7.
doi: 10.1186/s13054-016-1304-7 URL |
[46] |
Tonna JE, Abrams D, Brodie D, et al.Management of Adult Patients Supported with Venovenous Extracorporeal Membrane Oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J, 2021, 67(6): 601-610. doi: 10.1097/MAT.0000000000001432.
doi: 10.1097/MAT.0000000000001432 URL |
[47] |
Six S, Jaffal K, Ledoux G, et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Crit Care, 2016, 20(1): 195. doi: 10.1186/s13054-016-1368-4.
doi: 10.1186/s13054-016-1368-4 URL |
[48] |
Madotto F, Rezoagli E, Pham T, et al. Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study. Crit Care, 2020, 24(1): 125. doi: 10.1186/s13054-020-2826-6.
doi: 10.1186/s13054-020-2826-6 URL |
[49] |
Schjørring OL, Klitgaard TL, Perner A, et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med, 2021, 384(14): 1301-1311. doi: 10.1056/NEJMoa2032510.
doi: 10.1056/NEJMoa2032510 URL |
[50] |
Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med, 2020, 382(11):999-1008. doi: 10.1056/NEJMoa1916431.
doi: 10.1056/NEJMoa1916431 URL |
[51] |
Boyle AJ, Holmes DN, Hackett J, et al. Hyperoxaemia and hypoxaemia are associated with harm in patients with ARDS. BMC Pulm Med, 2021, 21(1): 285. doi: 10.1186/s12890-021-01648-7.
doi: 10.1186/s12890-021-01648-7 URL |
[52] |
Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med, 2018, 378(21): 1965-1975. doi: 10.1056/NEJMoa1800385.
doi: 10.1056/NEJMoa1800385 URL |
[53] |
Oehlers SH. Revisiting hypoxia therapies for tuberculosisClin Sci (Lond) 2019, 133(12): 1271-1280. doi: 10.1042/CS20190415.
doi: 10.1042/CS20190415 pmid: 31209098 |
[1] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
[2] | Zhou Yinan, Zhu Huili. Research progress of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 338-342. |
[3] | ZHANG Yan-kun, GUAN Yan, ZHAI Jing-jie, HAN Zhao. Application of anti-neovascular endothelial growth factor therapy in tuberculous chorioretinopathy: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 222-226. |
[4] | SI Fen, WANG Lin. Research progress on pulmonary rehabilitation care of patients with chronic obstructive pulmonary disease in stable stage [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 242-246. |
[5] | JIANG Ge-ge, LIANG Yuan, DU Li-na, WU Jian-lin. Research progress of CT roundness measurement in evaluating the invasiveness of GGN-like lung adenocarcinoma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 158-161. |
[6] | REN Jing-juan, ZHAO Yan-lin. Research progress of music therapy in rehabilitation treatment of lung diseases [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 162-165. |
[7] | LUO Li-juan, CHEN Yan. Research progress of animal models of emphysema [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 60-64. |
[8] | WU Di, LIN Fen, CHEN Xiao-hong, LIN You-fei, HUANG Ming-xiang, CHEN Li-zhou. Convalescent plasma therapy for two cases of rapid progressing severe COVID-19 and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 33-43. |
[9] | LIU Hui-min, TIAN Yao, BEI Cheng-li, FU Man-jiao. Application and prospect of immunological detection technology for active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 70-74. |
[10] | GUO Qiang, MA Ling, LI Jiang-hong, ZHANG Lei-lei, SHAO Fu-rong, ZHANG Lan, YANG Shu-min. Investigation and analysis of the implementation status of tuberculosis prevention and control in schools in Gansu Province during 2015 to 2020 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 322-325. |
[11] | LI Jing, ZHANG Yan, WU Qian-hong. Research progress on free DNA detection of Mycobacterium tuberculosis of non-sputum samples in tuberculosis diagnosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 277-282. |
[12] | LIU Xin, WU Qian-hong, CHEN Qi-liang, LI Jun-xiao, XU Jun-li, GUO Le. Rare angiosarcoma of thoracic soft tissue: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 210-215. |
[13] | GUO Qian, SHEN Chen. The progress of non-tuberculous mycobacterium disease in children [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 184-188. |
[14] | JIAO Wei-wei. Advances in molecular diagnostic techniques of tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 69-72. |
[15] | Rena·Abulaiti, Kelibiena·Tuerxun, Dilinuer·Wufuer. Research progress on correlation between bronchial asthma and psychological disorders [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 285-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||