结核与肺部疾病杂志 ›› 2021, Vol. 2 ›› Issue (1): 13-17.doi: 10.3969/j.issn.2096-8493.2021.01.004
收稿日期:
2021-02-24
出版日期:
2021-03-30
发布日期:
2021-03-24
通信作者:
逄宇
E-mail:pangyupound@163.com
基金资助:
ZHANG Zhi-guo1, GUO Hai-ping2, PANG Yu2()
Received:
2021-02-24
Online:
2021-03-30
Published:
2021-03-24
Contact:
PANG Yu
E-mail:pangyupound@163.com
摘要:
耐药结核病仍是结核病防控的重要挑战。近年兴起的分子生物学诊断方法克服了传统耐药诊断方法的不足,提高了其在临床应用中的价值,但是如何更好地利用分子生物学诊断方法服务于临床是值得思考的问题。作者主要系统分析了现有耐药结核病诊断技术,梳理了分子耐药检测技术在临床使用存在的困境,以期对医务工作者有所启发,并为耐药结核病的诊治提供参考。
张治国, 郭海萍, 逄宇. 实验室诊断技术在耐药结核病中应用价值的若干思考[J]. 结核与肺部疾病杂志, 2021, 2(1): 13-17. doi: 10.3969/j.issn.2096-8493.2021.01.004
ZHANG Zhi-guo, GUO Hai-ping, PANG Yu. Considerations for the application of laboratory diagnostics in detecting drug-resistant tuberculosis[J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 13-17. doi: 10.3969/j.issn.2096-8493.2021.01.004
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | 刘斌, 刘君, 裴豪, 等. 结核分枝杆菌实验室及其药敏检测技术进展. 中华医院感染学杂志, 2020,30(15):2396-2400. doi: 10.11816/cn.ni.2020-191954. |
[3] |
Wells WA, Boehme CC, Cobelens FG, et al. Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis, 2013,13(5):449-458. doi: 10.1016/S1473-3099(13)70025-2.
doi: 10.1016/S1473-3099(13)70025-2 URL |
[4] | 王丽娜. 痰液结核杆菌涂片及培养在初诊结核病中的应用比较. 罕少疾病杂志, 2019,26(5):19-21. doi: 10.3969/j.issn.1009-3257.2019.05.008. |
[5] |
Kelly-Cirino CD, Musisi E, Byanyima P, et al. Investigation of OMNIgene·SPUTUM performance in delayed tuberculosis testing by smear, culture, and Xpert MTB/RIF assays in Uganda. J Epidemiol Glob Health, 2017,7(2):103-109. doi: 10.1016/j.jegh.2017.04.001.
doi: 10.1016/j.jegh.2017.04.001 URL pmid: 28413105 |
[6] | 徐成良, 陈兆俊, 陆英, 等. 结核分枝杆菌两种培养方法比较. 上海预防医学, 2016,28(8):563-564. doi: 10.19428/j.cnki.sjpm.2016.08.016. |
[7] | 李仁忠, 王黎霞. 实验室新技术用于耐药结核病诊断流程的建议. 中华结核和呼吸杂志, 2016,39(7):568-569. doi: 10.3760/cma.j.issn.1001-0939.2016.07.020. |
[8] | 刘金娜. 微量液体培养基最低抑菌浓度法与罗氏比例法在结核分枝杆菌药敏试验中的价值比较. 实用临床医药杂志, 2020,24(17):28-30,40. doi: 10.7619/jcmp.202017007. |
[9] | 逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021,14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05. |
[10] | Harries AD, Kumar AMV. Challenges and Progress with Diagnosing Pulmonary Tuberculosis in Low- and Middle-Income Countries. Diagnostics (Basel), 2018,8(4):78. doi: 10.3390/diagnostics8040078. |
[11] | 赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 88-105. |
[12] |
Chauhan DS, Sharma R, Parashar D, et al. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis in clinical spe-cimens by real-time po8lymerase chain reaction hybridisation probe method. Indian J Med Microbiol, 2018,36(2):211-216. doi: 10.4103/ijmm.IJMM_14_304.
doi: 10.4103/ijmm.IJMM_14_304 URL pmid: 30084413 |
[13] | 饶兵. 线性探针技术在耐药结核病诊断中的应用. 东方药膳, 2020 (8):35. |
[14] | 刘立宾, 王静, 李浩, 等. 三种分子方法检测结核分枝杆菌利福平耐药性的比较. 中华临床感染病杂志, 2020,13(4):270-275. doi: 10.3760/cma.j.issn.1674-2397.2020.04.004. |
[15] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020,58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 URL pmid: 32759357 |
[16] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med, 2015,3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8.
doi: 10.1016/S2213-2600(15)00095-8 URL pmid: 25812968 |
[17] |
Jeyashree K, Shanmugasundaram D, Rade K, et al. Impact and operational feasibility of TrueNatTM MTB/Rif under India's RNTCP . Public Health Action, 2020,10(3):87-91. doi: 10.5588/pha.20.0004.
doi: 10.5588/pha.20.0004 URL pmid: 33134121 |
[18] |
Nikam C, Jagannath M, Narayanan MM, et al. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PLoS One, 2013,8(1):e51121. doi: 10.1371/journal.pone.0051121.
doi: 10.1371/journal.pone.0051121 URL pmid: 23349670 |
[19] |
Nikam C, Kazi M, Nair C, et al. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int J Mycobacteriol, 2014,3(3):205-210. doi: 10.1016/j.ijmyco.2014.04.003.
doi: 10.1016/j.ijmyco.2014.04.003 URL pmid: 26786489 |
[20] |
Ciesielczuk H, Kouvas N, North N, et al. Evaluation of the BD MAXTM MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur J Clin Microbiol Infect Dis, 2020,39(7):1321-1327. doi: 10.1007/s10096-020-03847-2.
doi: 10.1007/s10096-020-03847-2 URL pmid: 32078067 |
[21] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020,22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: 10.1016/j.jmoldx.2020.06.013 URL pmid: 32688054 |
[22] | 徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020,24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023. |
[23] |
Brandao AP, Pinhata JMW, Oliveira RS, et al. Speeding up the diagnosis of multidrug-resistant tuberculosis in a high-burden region with the use of a commercial line probe assay. J Bras Pneumol, 2019,45(2):e20180128. doi: 10.1590/1806-3713/e20180128.
doi: 10.1590/1806-3713/e20180128 URL pmid: 31017225 |
[24] |
Sharma K, Sharma M, Shree R, et al. Xpert MTB/RIF ultra for the diagnosis of tuberculous meningitis: A diagnostic accuracy study from India. Tuberculosis (Edinb), 2020,125:101990. doi: 10.1016/j.tube.2020.101990.
doi: 10.1016/j.tube.2020.101990 URL |
[25] | Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6):CD009593. doi: 10.1002/14651858.CD009593.pub4. |
[26] | 赵国连, 崔晓利, 康磊, 等. 荧光PCR探针熔解曲线技术检测涂阳患者痰标本中结核分枝杆菌耐药性的价值. 中国防痨杂志, 2019,41(2):149-155. doi: 10.3969/j.issn.1000-6621.2019.02.006. |
[27] |
Pang Y, Dong H, Tan Y, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep, 2016,6:25330. doi: 10.1038/srep25330.
doi: 10.1038/srep25330 URL pmid: 27149911 |
[28] |
Ford CB, Lin PL, Chase MR, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet, 2011,43(5):482-486. doi: 10.1038/ng.811.
doi: 10.1038/ng.811 URL pmid: 21516081 |
[29] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[30] |
Gygli SM, Keller PM, Ballif M, et al. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019,63(4):e02175-18. doi: 10.1128/AAC.02175-18.
doi: 10.1128/AAC.02175-18 URL pmid: 30718257 |
[31] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8 URL pmid: 31345251 |
[32] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase Ⅱ/Ⅲ, multicenter, randomized, open-label clinical trial. Trials, 2019,20(1):57. doi: 10.1186/s13063-018-3053-1.
doi: 10.1186/s13063-018-3053-1 URL pmid: 30651149 |
[33] |
Sharma N, Singla N, Khanna A, et al. Pattern and trends of drug sensitivity in MDR-TB cases in Delhi (2009—2014): A record based study. Indian J Tuberc, 2019,66(2):222-226. doi: 10.1016/j.ijtb.2019.02.017.
doi: 10.1016/j.ijtb.2019.02.017 URL pmid: 31151488 |
[34] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[35] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160. doi: 10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL pmid: 27810467 |
[36] | World Health Organization. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. Geneva: World Health Organization, 2021. |
[1] | 陈禹, 李晓睿, 王妙然, 张雨颀, 刘畅, 王照华, 石杰, 樊丽超, 尹智华, 谢建平. 金属离子在结核病中的作用研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 102-112. |
[2] | 徐雁南, 方梓昊, 赵文丽, 郑佳雄, 刘苏洋, 林健雄, 纪丽微, 常巧呈. 中国异烟肼耐药结核分枝杆菌基因突变特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 14-21. |
[3] | 万莹, 庞学文, 张帆. 2010—2020年天津市结核病防治健康促进工作效果评价[J]. 结核与肺部疾病杂志, 2025, 6(1): 22-29. |
[4] | 赵永年, 张丽杰, 王童敏. 2014—2023年新疆生产建设兵团肺结核报告发病流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 30-34. |
[5] | 郑建莉, 吴语媚, 张仕利, 杜恣闲, 李土荣, 陈石生, 林文革. 福建省龙岩市结核病重点高危人群主动筛查成本效果分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 35-39. |
[6] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[7] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[8] | 阎庆虎, 薛峰, 于泳, 秦毅, 阎庆梅, 崔嘉. 超声引导下微波消融技术在局限性结核病变治疗中的价值分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 55-60. |
[9] | 陈静, 秦娅莉, 王明栋, 杨儒斌, 王倩, 彭燕清, 邱继瑶, 张晓, 周昕艾. QuantiFERON-TB Gold Plus检测活动性肺结核的效能分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 61-67. |
[10] | 顾金花, 张盼盼. 三种结核分枝杆菌检测方法在某综合医院的应用价值评估[J]. 结核与肺部疾病杂志, 2025, 6(1): 68-72. |
[11] | 闫文华, 陈文君. 数智化健康教育在菌阳肺结核患者陪护者预防管理中的价值[J]. 结核与肺部疾病杂志, 2025, 6(1): 73-78. |
[12] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[13] | 张莹, 郭春辉. 结核性气管支气管狭窄的治疗研究进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 87-93. |
[14] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[15] | 欧庆芬. 非结核分枝杆菌肺病的CT诊断及鉴别诊断[J]. 结核与肺部疾病杂志, 2024, 5(S): 13-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||