结核与肺部疾病杂志 ›› 2024, Vol. 5 ›› Issue (3): 260-266.doi: 10.19983/j.issn.2096-8493.2024082
收稿日期:
2024-04-30
出版日期:
2024-06-20
发布日期:
2024-06-12
通信作者:
韩高华,Email:danny_75@njmu.edu.cn
Chang Yuting, Zhang Xinran, Han Gaohua()
Received:
2024-04-30
Online:
2024-06-20
Published:
2024-06-12
Contact:
Han Gaohua, Email:danny_75@njmu.edu.cn
摘要:
随着非小细胞肺癌发病率及病亡率的增加,如何延缓疾病的进展并延长患者的生存期成为现在研究的重点和难点。转移是肿瘤发展过程中不可避免的环节,并显著影响患者的中位生存期。因此,预测转移的发生并进行预防性治疗是改善非小细胞肺癌患者预后的重要途径。有研究者关注到,细胞焦亡是一种可同时在正常组织与肿瘤细胞中表达的程序性细胞死亡方式,并在不同的肿瘤类型中表现出截然不同的生物学作用。本文概述了细胞焦亡的不同激活途径和应用价值,重点总结了细胞焦亡在非小细胞肺癌转移中发挥的双重作用,结合非小细胞肺癌脑转移的研究内容进行分析,认为细胞焦亡可能参与肿瘤的定向转移,以期为细胞焦亡与非小细胞肺癌转移之间的相关性研究提供新的思路。
中图分类号:
昌雨婷, 张欣然, 韩高华. 细胞焦亡与非小细胞肺癌转移相关性的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 260-266. doi: 10.19983/j.issn.2096-8493.2024082
Chang Yuting, Zhang Xinran, Han Gaohua. Research progress on the correlation between pyroptosis and metastasis of non-small cell lung cancer[J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 260-266. doi: 10.19983/j.issn.2096-8493.2024082
[1] |
Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res, 2019, 11: 943-953. doi:10.2147/CMAR.S187317.
pmid: 30718965 |
[2] |
Roy-Chowdhuri S. Molecular Pathology of Lung Cancer. Surg Pathol Clin, 2021, 14(3): 369-377. doi:10.1016/j.path.2021.05.002.
pmid: 34373089 |
[3] | Hoshino A, Lyden D. Metastasis: Lymphatic detours for cancer. Nature, 2017, 546(7660): 609-610. doi:10.1038/546609a. |
[4] | Liu Y, Chen Q, Zhu Y, et al. Non-coding RNAs in necroptosis, pyroptosis and ferroptosis in cancer metastasis. Cell Death Discov, 2021, 7(1): 210. doi:10.1038/s41420-021-00596-9. |
[5] | Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol, 2006, 8: 1812-1825. doi:10.1111/j.1462-5822.2006.00751.x. |
[6] |
Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9): 4310-4329. doi:10.7150/thno.71086.
pmid: 35673561 |
[7] | Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521): 187-192. doi:10.1038/nature13683. |
[8] |
Silke J, Vince J. IAPs and Cell Death. Curr Top Microbiol Immunol, 2017, 403: 95-117. doi:10.1007/82_2016_507.
pmid: 28204973 |
[9] | Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661): 99-103. doi:10.1038/nature22393. |
[10] | Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK 1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science, 2018, 362(6418): 1064-1069. doi:10.1126/science.aau2818. |
[11] |
Kambara H, Liu F, Zhang X, et al. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep, 2018, 22(11): 2924-2936. doi:10.1016/j.celrep.2018.02.067.
pmid: 29539421 |
[12] |
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol, 2020, 20(3): 143-157. doi:10.1038/s41577-019-0228-2.
pmid: 31690840 |
[13] |
Aachoui Y, Sagulenko V, Miao EA, et al. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol, 2013, 16(3): 319-326. doi:10.1016/j.mib.2013.04.004.
pmid: 23707339 |
[14] |
Lightfield KL, Persson J, Brubaker SW, et al. Critical function for Naip 5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol, 2008, 9(10): 1171-1178. doi:10.1038/ni.1646.
pmid: 18724372 |
[15] |
Van Opdenbosch N, Gurung P, Vande Walle L, et al. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun, 2014, 5: 3209. doi:10.1038/ncomms4209.
pmid: 24492532 |
[16] |
Case CL, Roy CR. Analyzing caspase-1 activation during Legionella pneumophila infection in macrophages. Methods Mol Biol, 2013, 954: 479-491. doi:10.1007/978-1-62703-161-5_29.
pmid: 23150415 |
[17] |
Chen X, He WT, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res, 2016, 26(9): 1007-1020. doi:10.1038/cr.2016.100.
pmid: 27573174 |
[18] | Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, 535(7610): 153-158. doi:10.1038/nature18629. |
[19] |
Ye J, Zhang R, Wu F, et al. Non-apoptotic cell death in malignant tumor cells and natural compounds. Cancer Lett, 2018, 420: 210-227. doi:10.1016/j.canlet.2018.01.061.
pmid: 29410006 |
[20] | Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575): 660-665. doi:10.1038/nature15514. |
[21] |
Boise LH, Collins CM. Salmonella-induced cell death: apoptosis, necrosis or programmed cell death. Trends Microbiol, 2001, 9(2): 64-67. doi:10.1016/s0966-842x(00)01936-3.
pmid: 11173244 |
[22] |
de Gassart A, Martinon F. Pyroptosis: Caspase-11 Unlocks the Gates of Death. Immunity, 2015, 43(5): 835-837. doi:10.1016/j.immuni.2015.10.024.
pmid: 26588774 |
[23] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ, 2018, 25(3): 486-541. doi:10.1038/s41418-017-0012-4.
pmid: 29362479 |
[24] |
Jia Y, Wang X, Deng Y, et al. Pyroptosis Provides New Strategies for the Treatment of Cancer. J Cancer, 2023, 14(1): 140-151. doi:10.7150/jca.77965.
pmid: 36605484 |
[25] | Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610): 111-116. doi:10.1038/nature18590. |
[26] |
He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res, 2015, 25(12): 1285-1298. doi:10.1038/cr.2015.139.
pmid: 26611636 |
[27] | Zhang Z, Zhang Y, Xia S, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature, 2020, 579(7799): 415-420. doi:10.1038/s41586-020-2071-9. |
[28] | Yu P, Chen X, Peng C. A new perspective in pyroptosis: lifting the veil on GSDMA activation. Front Med, 2023, 17(3): 581-583. doi:10.1007/s11684-022-0971-9. |
[29] | Gao J, Qiu X, Xi G, et al. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non small cell lung cancer. Oncol Rep, 2018, 40(4): 1971-1984. doi:10.3892/or.2018.6634. |
[30] | Wu X, Mao X, Huang Y, et al. Detection of proteins associated with the pyroptosis signaling pathway in breast cancer tissues and their significance. Int J Clin Exp Pathol, 2020, 13(6): 1408-1414. |
[31] |
van Deventer HW, Burgents JE, Wu QP, et al. The inflammasome component NLRP3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res, 2010, 70(24): 10161-10169. doi:10.1158/0008-5472.CAN-10-1921.
pmid: 21159638 |
[32] | Kusmartsev S, Gabrilovich DI. Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother, 2002, 51: 293-298. doi:10.1007/s00262-002-0280-8. |
[33] |
Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004, 10: 942-949. doi:10.1038/nm1093.
pmid: 15322536 |
[34] | Imada A, Shijubo N, Kojima H, et al. Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J, 2000, 15: 1087-1093. doi:10.1034/j.1399-3003.2000.01517.x. |
[35] |
Tomita M, Matsuzaki Y, Onitsuka T. Effect of mast cells on tumor angiogenesis in lung cancer. Ann Thorac Surg, 2000, 69: 1686-1690. doi:10.1016/s0003-4975(00)01160-7.
pmid: 10892907 |
[36] |
Takanami I, Takeuchi K, Naruke M. Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer, 2000, 88: 2686-2692.
pmid: 10870050 |
[37] |
Hamada I, Kato M, Y amasaki T, et al. Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res, 2002, 22: 4281-4284.
pmid: 12553070 |
[38] |
de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol, 2006, 13: 118-137. doi:10.1159/000092969.
pmid: 16627962 |
[39] |
Hou J, Zhao R, Xia W, et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol, 2020, 22(10): 1264-1275. doi:10.1038/s41556-020-0575-z.
pmid: 32929201 |
[40] | Traughber CA, Deshpande GM, Neupane K, et al. Myeloid-cell-specific role of Gasdermin D in promoting lung cancer progression in mice. iScience, 2023, 26(2): 106076. doi:10.1016/j.isci.2023.106076. |
[41] | Lv T, Xiong X, Yan W, et al. Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating cGAS pathway and downregulating PD-L1 expression. J Immunother Cancer, 2022, 10(6): e004763. doi:10.1136/jitc-2022-004763. |
[42] |
Rathinam VA, Fitzgerald KA. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 2016, 165(4): 792-800. doi:10.1016/j.cell.2016.03.046.
pmid: 27153493 |
[43] | Kong H, Wang Y, Zeng X, et al. Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol, 2015, 36(10): 7501-7513. doi:10.1007/s13277-015-3473-4. |
[44] | Yin H, Liu YG, Li F, et al. Resibufogenin suppresses growth and metastasis through inducing caspase-1-dependent pyroptosis via ROS-mediated NF-κB suppression in non-small cell lung cancer. Anat Rec (Hoboken), 2021, 304(2): 302-312. doi:10.1002/ar.24415. |
[45] | Teng JF, Mei QB, Zhou XG, et al. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers (Basel), 2020, 12(1): 193. doi:10.3390/cancers12010193. |
[46] | Yokoyama S, Cai Y, Murata M, et al. A novel pathway of LPS uptake through syndecan-1 leading to pyroptotic cell death. Elife, 2018, 7: e37854. doi:10.7554/eLife.37854. |
[47] | Huang YL, Zhang GH, Zhu Q, et al. Expression levels of caspase-3 and gasdermin E and their involvement in the occurrence and prognosis of lung cancer. Cancer Rep (Hoboken), 2022, 5(9): e1561. doi:10.1002/cnr2.1561. |
[48] | Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neurooncol, 2005, 75(1): 5-14. doi:10.1007/s11060-004-8093-6. |
[49] |
Sørensen JB, Hansen HH, Hansen M, et al. Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol, 1988, 6(9): 1474-1480. doi:10.1200/JCO.1988.6.9.1474.
pmid: 3047337 |
[50] |
Wood SL, Pernemalm M, Crosbie PA, et al. The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev, 2014, 40(4): 558-566. doi:10.1016/j.ctrv.2013.10.001.
pmid: 24176790 |
[51] |
Sperduto PW, Kased N, Roberge D, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol, 2012, 30(4): 419-425. doi:10.1200/JCO.2011.38.0527.
pmid: 22203767 |
[52] | Belperio JA, Phillips RJ, Burdick MD, et al. The SDF-1/CXCL12/CXCR4 biological axis in non-small cell lung cancer metastases. Chest, 2004, 125(5 Suppl): 156S. doi:10.1378/chest.125.5_suppl.156s. |
[53] |
Nolte SM, Venugopal C, McFarlane N, et al. A cancer stem cell model for studying brain metastases from primary lung cancer. J Natl Cancer Inst, 2013, 105(8): 551-562.
doi: 10.1093/jnci/djt022 pmid: 23418195 |
[54] | Xie M, Su C. Microenvironment and the progress of immunotherapy in clinical practice of NSCLC brain metastasis. Front Oncol, 2023, 12: 1006284. |
[55] | Liu W, Song J, Du X, et al. AKR1B10 (Aldo-keto reductase family 1 B10) promotes brain metastasis of lung cancer cells in a multi-organ microfluidic chip model. ActaBiomater, 2019, 91: 195-208. doi:10.1016/j.actbio.2019.04.053. |
[56] | Xu P, Tao C, Zhu Y, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation, 2021, 18(1): 188. doi:10.1186/s12974-021-02226-8. |
[57] | Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK 1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999, 398(6724): 252-256. doi:10.1038/18465. |
[58] |
Shen Q, Chen Z, Zhao F, et al. Reversal of prolonged obesity-associated cerebrovascular dysfunction by inhibiting microglial Tak1. Nat Neurosci, 2020, 23(7): 832-841. doi:10.1038/s41593-020-0642-6.
pmid: 32451485 |
[59] | Cui YQ, Meng F, Zhan WL, et al. High Expression of GSDMC Is Associated with Poor Survival in Kidney Clear Cell Cancer. Biomed Res Int, 2021, 2021: 5282894. doi:10.1155/2021/5282894. |
[60] | Song R, Wu Y, He S, et al. A pilot study on pyroptosis related genes in peripheral blood mononuclear cells of non-small cell lung cancer patients. BMC Pulm Med, 2023, 23(1): 174. doi:10.1186/s12890-023-02456-x. |
[61] |
Wei J, Xu Z, Chen X, et al. Overexpression of GSDMC is a prognostic factor for predicting a poor outcome in lung adenocarcinoma. Mol Med Rep, 2020, 21(1): 360-370. doi:10.3892/mmr.2019.10837.
pmid: 31939622 |
[62] |
Li X, He J. A Novel Pyroptosis-Related Gene Signature for Early-Stage Lung Squamous Cell Carcinoma. Int J Gen Med, 2021, 14: 6439-6453. doi:10.2147/IJGM.S331975.
pmid: 34675612 |
[63] | Lin W, Chen Y, Wu B, et al. Identification of the pyroptosis related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov, 2021, 7(1): 161. doi:10.1038/s41420-021-00557-2. |
[64] |
Chang WJ, Sun JM, Lee JY, et al. A retrospective comparison of adjuvant chemotherapeutic regimens for non-small cell lung cancer (NSCLC): paclitaxel plus carboplatin versus vinorelbine plus cisplatin. Lung Cancer, 2014, 84(1): 51-55. doi:10.1016/j.lungcan.2014.01.017.
pmid: 24521819 |
[65] | Zhang CC, Li CG, Wang YF, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A 549 lung cancer cells via caspase-3/GSDME activation. Apoptosis, 2019, 24(3/4): 312-325. doi:10.1007/s10495-019-01515-1. |
[66] | Peng Z, Wang P, Song W, et al. GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration. Signal Transduct Target Ther, 2020, 5(1): 159. doi:10.1038/s41392-020-00274-9. |
[67] |
Tan Y, Xiang J, Huang Z, et al. Trichosanthin inhibits cell growth and metastasis by promoting pyroptosis in non-small cell lung cancer. J Thorac Dis, 2022, 14(4): 1193-1202. doi:10.21037/jtd-22-282.
pmid: 35572907 |
[68] |
Cheng Z, Li Z, Gu L, et al. Ophiopogonin B alleviates cisplatin resistance of lung cancer cells by inducing Caspase-1/GSDMD dependent pyroptosis. J Cancer, 2022, 13(2): 715-727. doi:10.7150/jca.66432.
pmid: 35069914 |
[69] | Yuan R, Zhao W, Wang QQ, et al. Cucurbitacin B inhibits non-small cell lung cancer in vivo and in vitro by triggering TLR4/NLRP3/GSDMD-dependent pyroptosis. Pharmacol Res, 2021, 170: 105748. doi:10.1016/j.phrs.2021.105748. |
[70] | Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis, 2018, 9(2): 117. doi:10.1038/s41419-017-0063-y. |
[71] | Liu J, Yao L, Zhang M, et al. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY), 2019, 11(18): 7830-7846. doi:10.18632/aging.102291. |
[72] | Zhang T, Li Y, Zhu R, et al. Transcription Factor p 53 Suppresses Tumor Growth by Prompting Pyroptosis in Non-Small-Cell Lung Cancer. Oxid Med Cell Longev, 2019, 2019: 8746895. doi:10.1155/2019/8746895. |
[73] | Alsaadi M, Tezcan G, Garanina EE, et al. Doxycycline Attenuates Cancer Cell Growth by Suppressing NLRP3-Mediated Inflammation. Pharmaceuticals (Basel), 2021, 14(9): 852. doi:10.3390/ph14090852. |
[74] | Wang F, Liu W, Ning J, et al. Simvastatin Suppresses Proli-feration and Migration in Non-small Cell Lung Cancer via Pyroptosis. Int J Biol Sci, 2018, 14(4): 406-417. doi:10.7150/ijbs.23542. |
[1] | 赵永年, 张丽杰, 王童敏. 2014—2023年新疆生产建设兵团肺结核报告发病流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 30-34. |
[2] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[3] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[4] | 闫文华, 陈文君. 数智化健康教育在菌阳肺结核患者陪护者预防管理中的价值[J]. 结核与肺部疾病杂志, 2025, 6(1): 73-78. |
[5] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[6] | 唐逾鸿, 江莉娜. 2019—2023年合川区大学学生肺结核流行病学特征分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 93-95. |
[7] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读[J]. 结核与肺部疾病杂志, 2024, 5(6): 500-504. |
[8] | 魏潇雯, 董宁, 沈蕾, 陶永红, 吴元浩, 张林. 儿童结核病患者父母照护体验及需求的质性研究[J]. 结核与肺部疾病杂志, 2024, 5(6): 505-510. |
[9] | 朱衣兴, 常德. 慢性呼吸系统疾病管理的现状和展望[J]. 结核与肺部疾病杂志, 2024, 5(6): 567-572. |
[10] | 蔡晓婷, 杜雨华, 吴桂锋, 何立乾, 苏碧慧, 龚芳, 王挺, 赖铿, 伍小英. 2016—2023年广州市肺结核登记情况及特征分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 430-436. |
[11] | 曾琴, 曾凡清, 何坤, 杨红红, 刘敏. 常规病理学镜检、抗酸染色镜检及TB-DNA在浅表淋巴结结核诊断中的价值[J]. 结核与肺部疾病杂志, 2024, 5(5): 461-467. |
[12] | 刘鑫, 仵倩红, 陈其亮, 郭乐. Ⅲ期结核性脓胸继发胸廓塌陷畸形情况及相关影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 283-288. |
[13] | 赵文丽, 方梓昊, 徐雁南, 刘苏洋, 林健雄, 陈壮濠, 符慧, 陈蕊明, 常巧呈. 2005—2023年广东省南澳县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 317-324. |
[14] | 夏军. 2014—2023年江西省上饶市肺结核流行病学特征分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 325-332. |
[15] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||