结核与肺部疾病杂志 ›› 2021, Vol. 2 ›› Issue (3): 262-266.doi: 10.3969/j.issn.2096-8493.20210037
收稿日期:
2021-05-11
出版日期:
2021-09-30
发布日期:
2021-09-24
通信作者:
张晓菊
E-mail:zhangxiaoju1010@henu.edu.cn
基金资助:
Received:
2021-05-11
Online:
2021-09-30
Published:
2021-09-24
Contact:
ZHANG Xiao-ju
E-mail:zhangxiaoju1010@henu.edu.cn
摘要:
肺癌的早期诊断是减少肺癌死亡率、改善预后的重要措施和必要手段。通过预测模型可对肺癌筛查发现的肺结节进行恶性风险分层,辅助临床医师制定出更加科学的临床决策,提高肺癌早期诊断率。本文就预测模型在肺癌早期诊断及随访管理中的应用和存在的问题进行综述。
刘海洋, 张晓菊. 预测模型在肺癌早期诊断中的应用[J]. 结核与肺部疾病杂志, 2021, 2(3): 262-266. doi: 10.3969/j.issn.2096-8493.20210037
LIU Hai-yang, ZHANG Xiao-ju. Application of predictive model in early diagnosis of lung cancer[J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 262-266. doi: 10.3969/j.issn.2096-8493.20210037
[1] |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1):19-28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.008.
doi: 10.3760/cma.j.issn.0253-3766.2019.01.008 |
[2] |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5):395-409. doi: 10.1056/NEJMoa1102873.
doi: 10.1056/NEJMoa1102873 URL |
[3] |
International Early Lung Cancer Action Program Investigators, Henschke CI, Yankelevitz DF, et al. Survival of patients with stage Ⅰ lung cancer detected on CT screening. N Engl J Med, 2006, 355(17):1763-1771. doi: 10.1056/NEJMoa060476.
doi: 10.1056/NEJMoa060476 URL |
[4] |
Patz EF Jr, Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med, 2014, 174(2):269-274. doi: 10.1001/jamainternmed.2013.12738.
doi: 10.1001/jamainternmed.2013.12738 URL |
[5] |
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版). 中华结核和呼吸杂志, 2018, 41(10):763-771. doi: 10.3760/cma.j.issn.1001-0939.2018.10.004.
doi: 10.3760/cma.j.issn.1001-0939.2018.10.004 |
[6] |
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 1997, 157(8):849-855.
pmid: 9129544 |
[7] |
Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl):e93S-e120S. doi: 10.1378/chest.12-2351.
doi: 10.1378/chest.12-2351 URL |
[8] |
Swensen SJ, Silverstein MD, Edell ES, et al. Solitary pulmonary nodules: clinical prediction model versus physicians. Mayo Clin Proc, 1999, 74(4):319-329. doi: 10.4065/74.4.319.
doi: 10.4065/74.4.319 pmid: 10221459 |
[9] |
Herder GJ, van Tinteren H, Golding RP, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest, 2005, 128(4):2490-2496. doi: 10.1378/chest.128.4.2490.
doi: 10.1378/chest.128.4.2490 URL |
[10] |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10):910-919. doi: 10.1056/NEJMoa1214726.
doi: 10.1056/NEJMoa1214726 URL |
[11] |
Winter A, Aberle DR, Hsu W, et al. External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data. Thorax, 2019, 74(6):551-563. doi: 10.1136/thoraxjnl-2018-212413.
doi: 10.1136/thoraxjnl-2018-212413 URL |
[12] |
Baldwin DR, Callister ME, Guideline Development Group. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax, 2015, 70(8):794-798. doi: 10.1136/thoraxjnl-2015-207221.
doi: 10.1136/thoraxjnl-2015-207221 pmid: 26135833 |
[13] |
Gould MK, Ananth L, Barnett PG, et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest, 2007, 131(2):383-388. doi: 10.1378/chest.06-1261.
doi: 10.1378/chest.06-1261 URL |
[14] |
Li Y, Chen KZ, Wang J. Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people. Clin Lung Cancer, 2011, 12(5):313-319. doi: 10.1016/j.cllc.2011.06.005.
doi: 10.1016/j.cllc.2011.06.005 URL |
[15] |
Zhang R, Tian P, Chen B, et al. Predicting Lung Cancer Risk of Incidental Solid and Subsolid Pulmonary Nodules in Different Sizes. Cancer Manag Res, 2020, 12:8057-8066. doi: 10.2147/CMAR.S256719.
doi: 10.2147/CMAR.S256719 pmid: 32943938 |
[16] |
Wu Z, Huang T, Zhang S, et al. A prediction model to evaluate the pretest risk of malignancy in solitary pulmonary nodules: evidence from a large Chinese southwestern population. J Cancer Res Clin Oncol, 2021, 147(1):275-285. doi: 10.1007/s00432-020-03408-2.
doi: 10.1007/s00432-020-03408-2 URL |
[17] |
Liu HY, Zhao XR, Chi M, et al. Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: a multivariable predictive model study. Chin Med J (Engl), 2021, 134(14):1687-1694. doi: 10.1097/CM9.0000000000001507.
doi: 10.1097/CM9.0000000000001507 |
[18] |
Yang B, Jhun BW, Shin SH, et al. Comparison of four models predicting the malignancy of pulmonary nodules: A single-center study of Korean adults. PLoS One, 2018, 13(7):e0201242. doi: 10.1371/journal.pone.0201242.
doi: 10.1371/journal.pone.0201242 URL |
[19] |
Song YS, Park CM, Park SJ, et al. Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy. Radiology, 2014, 273(1):276-284. doi: 10.1148/radiol.14132324.
doi: 10.1148/radiol.14132324 URL |
[20] |
齐琳琳, 王建卫, 杨琳, 等. 肺纯磨玻璃结节体积和质量倍增时间在鉴别浸润腺癌与微浸润腺癌及浸润前病变中的作用. 中华放射学杂志, 2017, 51(7):493-499. doi: 10.3760/cma.j.issn.1005-1201.2017.07.004.
doi: 10.3760/cma.j.issn.1005-1201.2017.07.004 |
[21] |
Yang DW, Zhang Y, Hong QY, et al. Role of a serum-based biomarker panel in the early diagnosis of lung cancer for a cohort of high-risk patients. Cancer, 2015, 121 Suppl 17:3113-3121. doi: 10.1002/cncr.29551.
doi: 10.1002/cncr.29551 URL |
[22] |
Yang D, Zhang X, Powell CA, et al. Probability of cancer in high-risk patients predicted by the protein-based lung cancer biomarker panel in China: LCBP study. Cancer, 2018, 124(2):262-270. doi: 10.1002/cncr.31020.
doi: 10.1002/cncr.31020 URL |
[23] |
Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early Detection of Lung Cancer, Guida F, Sun N, et al. Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncol, 2018, 4(10):e182078. doi: 10.1001/jamaoncol.2018.2078.
doi: 10.1001/jamaoncol.2018.2078 URL |
[24] |
Jett JR, Peek LJ, Fredericks L, et al. Audit of the autoantibody test, EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer, 2014, 83(1):51-55. doi: 10.1016/j.lungcan.2013.10.008.
doi: 10.1016/j.lungcan.2013.10.008 URL |
[25] |
Chapman CJ, Healey GF, Murray A, et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol, 2012, 33(5):1319-1326. doi: 10.1007/s13277-012-0379-2.
doi: 10.1007/s13277-012-0379-2 URL |
[26] |
Massion PP, Healey GF, Peek LJ, et al. Autoantibody Signature Enhances the Positive Predictive Power of Computed Tomography and Nodule-Based Risk Models for Detection of Lung Cancer. J Thorac Oncol, 2017, 12(3):578-584. doi: 10.1016/j.jtho.2016.08.143.
doi: S1556-0864(16)30928-5 pmid: 27615397 |
[27] |
Lin Y, Leng Q, Jiang Z, et al. A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules. Int J Cancer, 2017, 141(6):1240-1248. doi: 10.1002/ijc.30822.
doi: 10.1002/ijc.30822 URL |
[28] |
Chen X, Zhou F, Li X, et al. Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer. J Thorac Oncol, 2015, 10(8):1163-1171. doi: 10.1097/JTO.0000000000000606.
doi: 10.1097/JTO.0000000000000606 URL |
[29] |
中国肺癌防治联盟, 中华医学会呼吸病学分会肺癌学组, 中国医师协会呼吸医师分会肺癌工作委员会. 肺癌筛查与管理中国专家共识. 国际呼吸杂志, 2019, 39(21):1604-1615. doi: 10.3760/cma.j.issn.1673-436X.2019.21.002.
doi: 10.3760/cma.j.issn.1673-436X.2019.21.002 |
[30] |
Feng M, Ye X, Chen B, et al. Detection of circulating genetically abnormal cells using 4-color fluorescence in situ hybridization for the early detection of lung cancer. J Cancer Res Clin Oncol, 2021, 147(8):2397-2405. doi: 10.1007/s00432-021-03517-6.
doi: 10.1007/s00432-021-03517-6 URL |
[31] |
Kossenkov AV, Qureshi R, Dawany NB, et al. A Gene Expression Classifier from Whole Blood Distinguishes Benign from Malignant Lung Nodules Detected by Low-Dose CT. Cancer Res, 2019, 79(1):263-273. doi: 10.1158/0008-5472.CAN-18-2032.
doi: 10.1158/0008-5472.CAN-18-2032 pmid: 30487137 |
[32] |
Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics, 2019, 9(7):2056-2070. doi: 10.7150/thno.28119.
doi: 10.7150/thno.28119 URL |
[33] |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6):954-961. doi: 10.1038/s41591-019-0447-x.
doi: 10.1038/s41591-019-0447-x pmid: 31110349 |
[34] |
Ardila D, Kiraly AP, Bharadwaj S, et al. Author Correction: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(8):1319. doi: 10.1038/s41591-019-0536-x.
doi: 10.1038/s41591-019-0536-x pmid: 31253948 |
[35] |
Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys, 2018, 45(4):1537-1549. doi: 10.1002/mp.12820.
doi: 10.1002/mp.12820 URL |
[36] | American College of Radiology. Lung CT Screening Reporting and Data System (Lung-RADS)[EB/OL]. [2021-05-11]. http://www.acr.org/Quality-Safety/Resources/LungRADS. |
[37] |
Wang X, Leader JK, Wang R, et al. Vasculature surrounding a nodule: A novel lung cancer biomarker. Lung Cancer, 2017, 114:38-43. doi: 10.1016/j.lungcan.2017.10.008.
doi: 10.1016/j.lungcan.2017.10.008 URL |
[38] |
Gu S, Wilson D, Tan J, et al. Pulmonary nodule registration: rigid or nonrigid? Med Phys, 2011, 38(7):4406-4414. doi: 10.1118/1.3602457.
doi: 10.1118/1.3602457 URL |
[39] |
Raghu VK, Zhao W, Pu J, et al. Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models. Thorax, 2019, 74(7):643-649. doi: 10.1136/thoraxjnl-2018-212638.
doi: 10.1136/thoraxjnl-2018-212638 URL |
[40] |
Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst, 2003, 95(6):470-478. doi: 10.1093/jnci/95.6.470.
doi: 10.1093/jnci/95.6.470 URL |
[41] |
Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst, 2007, 99(9):715-726. doi: 10.1093/jnci/djk153.
doi: 10.1093/jnci/djk153 URL |
[1] | 曾文美, 吴苏龙, 刘灼帆, 袁茏, 陈碧琳, 荣艳. 便携式睡眠监测对阻塞性睡眠呼吸暂停低通气患者整夜病情评估及心血管疾病风险因素分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 1-7. |
[2] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[3] | 郭萌, 朱玉辉, 范永德, 李敬文. 基于神经网络的国内呼吸病学、结核病学核心期刊论文热度预测初探[J]. 结核与肺部疾病杂志, 2025, 6(1): 79-86. |
[4] | 翟鹏勇, 张潇雅, 马文途, 苏凝, 赵素霞. 新型冠状病毒感染肺部影像学病灶延迟吸收相关因素分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 30-34. |
[5] | 胡颖颖. 生物–心理–社会医学模式下我国老年人健康的社会影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 96-98. |
[6] | 刘芳, 马金彤, 刘永梅, 罗培培, 冯洋, 刘振龙, 王玉红. 倾向性评分匹配法分析慢性阻塞性肺疾病合并肺结核的危险因素及预测模型构建[J]. 结核与肺部疾病杂志, 2024, 5(6): 511-516. |
[7] | 杨亚蕊, 郭旭君, 魏巍, 何娟, 李盛斌, 钟涛, 高婉玲, 刘守江, 刘盛元. 深圳市南山区≥40岁常住居民慢性阻塞性肺疾病知识知晓情况及患病率影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(6): 517-525. |
[8] | 常丽, 任宏, 关雪晴, 庞有铨, 甄春英, 边楠楠, 孙素芹. 恶性胸腔积液患者血管内皮生长因子表达水平与疗效相关性研究[J]. 结核与肺部疾病杂志, 2024, 5(6): 533-539. |
[9] | 马晓玲, 赵永年, 段丽丽, 刘新文. 新疆生产建设兵团2016—2022年肺结核患者不良转归列线图预测模型的构建与验证[J]. 结核与肺部疾病杂志, 2024, 5(6): 552-559. |
[10] | 朱衣兴, 常德. 慢性呼吸系统疾病管理的现状和展望[J]. 结核与肺部疾病杂志, 2024, 5(6): 567-572. |
[11] | 孙慧娟, 苏伟, 陈伟. 利福平耐药结核病患者不良治疗结局及其影响因素研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 573-582. |
[12] | 孙博, 冯丽平, 滕冲, 朱含芳, 赵冰, 冯涛, 王庆奎, 周浩, 高星海, 欧喜超. 2021—2023年内蒙古自治区兴安盟结核分枝杆菌耐药特征及耐多药影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 437-444. |
[13] | 陈彦宵, 杜莹, 张彬, 杜江, 曹雪芳, 冯博轩, 郭同磊, 何翼君, 沈玲羽, 黄娟娟, 邸元植, 梁建国, 李子涵, 刘自森, 段伟焘, 高磊, 辛赫男. 中牟县基层医疗机构医生结核感染控制知识知晓情况及影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 453-460. |
[14] | 薛敏, 魏小玲, 刘苗, 王静, 张赟, 马香. 儿童哮喘起病年龄相关影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 468-475. |
[15] | 刘鑫, 仵倩红, 陈其亮, 郭乐. Ⅲ期结核性脓胸继发胸廓塌陷畸形情况及相关影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(4): 283-288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||