结核与肺部疾病杂志 ›› 2024, Vol. 5 ›› Issue (6): 511-516.doi: 10.19983/j.issn.2096-8493.2024121

• 论著 • 上一篇    下一篇

倾向性评分匹配法分析慢性阻塞性肺疾病合并肺结核的危险因素及预测模型构建

刘芳1, 马金彤2, 刘永梅3, 罗培培1, 冯洋1, 刘振龙1, 王玉红4()   

  1. 1河北省保定市人民医院结核一科,保定 071000
    2河北省保定市人民医院医务科,保定 071000
    3河北省保定市人民医院营养科,保定 071000
    4河北省胸科医院结核二科,石家庄 050000
  • 收稿日期:2024-07-15 出版日期:2024-12-20 发布日期:2024-12-11
  • 通信作者: 王玉红 E-mail:liuflif9996@163.com
  • 基金资助:
    保定市科技计划项目(17ZF031)

Analysis of risk factors of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis with tendency score matching method and construction of a prediction model

Liu Fang1, Ma Jintong2, Liu Yongmei3, Luo Peipei1, Feng Yang1, Liu Zhenlong1, Wang Yuhong4()   

  1. 1The First Department of Tuberculosis, Baoding People’s Hospital, Baoding 071000, China
    2Department of Medical, Baoding People’s Hospital, Baoding 071000, China
    3Department of Nutrition, Baoding People’s Hospital, Baoding 071000, China
    4The Second Department of Tuberculosis, Hebei Chest Hospital, Shijiazhuang 050000, China
  • Received:2024-07-15 Online:2024-12-20 Published:2024-12-11
  • Contact: Wang Yuhong E-mail:liuflif9996@163.com
  • Supported by:
    Baoding Science and Technology Plan Project(17ZF031)

摘要:

目的: 探讨基于倾向性评分分析慢性阻塞性肺疾病(COPD)合并肺结核的危险因素及预测模型。方法: 选取2020年7月至2023年7月保定市人民医院收治的150例COPD合并肺结核患者作为观察组,并选择保定市人民医院同期收治的100例单纯COPD患者作为对照组。搜集可能影响COPD合并肺结核的相关因素,采用倾向性评分匹配法对患者性别、年龄、居住地进行匹配,匹配比例为1∶2。应用单因素和多因素logistic回归分析,筛选出影响COPD患者合并肺结核的独立危险因素,并根据危险因素的回归系数得到危险权重构建预测模型,通过绘制受试者工作特征(ROC)曲线,以曲线下面积评估预测模型的价值。结果: 多因素logistic回归分析结果显示,吸烟史(OR=2.038,95%CI:1.119~3.713)、未接种卡介苗(OR=1.714,95%CI:1.283~2.291)、结核病病史(OR=2.795,95%CI:1.723~4.536)、吸入糖皮质激素(OR=2.083,95%CI:1.367~3.175)、粉尘接触史(OR=2.109,95%CI:1.333~3.336)、营养不良(OR=2.815,95%CI:1.755~4.515)均是COPD合并肺结核的独立危险因素。ROC曲线结果显示,预测模型对预测COPD合并肺结核的曲线下面积为0.811(95%CI:0.762~0.894),此时敏感度和特异度分别为80.67%和73.59%。结论: 基于倾向性评分匹配法分析的结果,吸烟史、未接种卡介苗、结核病病史、吸入糖皮质激素、粉尘接触史、营养不良均是COPD合并肺结核的独立危险因素,根据以上危险因素构建的预测模型对预测COPD合并肺结核具有较好的预测价值。

关键词: 肺疾病, 阻塞性, 结核, 肺, 危险因素, 预测, 模型, 结构

Abstract:

Objective: To investigate risk factors and develop a prediction model for chronic obstructive pulmonary disease (COPD) combined with pulmonary tuberculosis (PTB) using propensity score analysis. Methods: A total of 150 patients with COPD and PTB admitted to the Baoding People’s Hospital from July 2020 to July 2023 were selected as observation group, and 100 patients with only COPD admitted to the hospital during the same period were selected as control group. Relevant factors that might affect COPD combined with PTB were collected, and propensity score matching method was used to match gender, age, and place of residence of the patients, with a matching ratio of 1∶2. Univariable and multivariable logistic regression analysis was used to screen out independent risk factors affecting COPD combing PTB, and risk weights were obtained according to regression coefficients of risk factors to construct a prediction model, and then a ROC curve was drawn, and the value of the prediction model was evaluated by area under the curve (AUC). Results: Multivariable logistic regression analysis revealed that a history of smoking (OR=2.038, 95%CI: 1.119-3.713), lack of BCG vaccination (OR=1.714, 95%CI: 1.283-2.291), tuberculosis history (OR=2.795, 95%CI: 1.723-4.536), use of inhaled glucocorticoids (OR=2.083, 95%CI: 1.367-3.175), dust exposure (OR=2.109, 95%CI: 1.333-3.336), and poor nutritional status (OR=2.815, 95%CI: 1.755-4.515) were independent risk factors for COPD combined with PTB. AUC of ROC curve for the prediction model was 0.811 (95%CI: 0.762-0.894), with a sensitivity and specificity of 80.67% and 73.59%, respectively. Conclusion: Propensity score matching analysis indicates that a history of smoking, lack of BCG vaccination, tuberculosis history, use of inhaled glucocorticoids, dust exposure, and poor nutritional status are independent risk factors for COPD combined with PTB. The prediction model constructed based on these risk factors demonstrates a good prediction value for COPD combined with PTB.

Key words: Lung diseases, obstructive, Tuberculosis, pulmonary, Risk factors, Forecasting, Models, structural

中图分类号: