结核与肺部疾病杂志 ›› 2025, Vol. 6 ›› Issue (5): 587-597.doi: 10.19983/j.issn.2096-8493.20250049

• 综述 • 上一篇    下一篇

2024年全球结核病药物研发进展:多靶点策略、耐药机制突破与个体化治疗

阿卜力米提·阿卜杜喀迪尔1, 李佩波2, 谢建平1,2()   

  1. 1西南大学生命科学学院现代生物医药研究所, 重庆 400715
    2重庆市公共卫生医疗中心, 重庆 400036
  • 收稿日期:2025-03-23 出版日期:2025-10-20 发布日期:2025-10-15
  • 通信作者: 谢建平 E-mail:georgex@swu.edu.cn
  • 基金资助:
    国家自然科学基金(82472325);2023年重庆市公共卫生重点专科(学科)建设项目,重庆市科卫联合医学科研项目(CSTB2024NSCQ-MSX0703);2023年重庆市公共卫生重点专科(学科)建设项目,重庆市科卫联合医学科研项目(2023MSXM107);西南大学研究生科研创新项目(SWUB23040)

2024 global advances in tuberculosis drug development: multi-target strategies, breakthroughs in drug resistance mechanisms, and personalized treatment

Abulimiti Abudukadier1, Li Peibo2, Xie Jianping1,2()   

  1. 1School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing 400715, China
    2Chongqing Public Health Medical Center, Chongqing 400036, China
  • Received:2025-03-23 Online:2025-10-20 Published:2025-10-15
  • Contact: Xie Jianping E-mail:georgex@swu.edu.cn
  • Supported by:
    National Natural Science Foundation ofChina(82472325);2023 Chongqing Municipal KeySpecialty(Discipline) Construction Projectin Public Health);Chongqing Science-Health JointMedical Research Project(CSTB2024NSCQ-MSX0703);Chongqing Science-Health JointMedical Research Project(2023MSXM107);Graduate Research and Innovation Project of Southwest University(SWUB23040)

摘要:

结核病仍然是全球公共卫生重大挑战。耐药结核病亟须研发新药。当前抗结核药物研发聚焦于分枝杆菌细胞壁合成(如分枝菌酸合成通路)、能量代谢、蛋白质合成与降解、DNA复制修复及宿主免疫调控等关键靶标。在分枝菌酸合成领域,Pks13-TE抑制剂(如N-芳基吲哚衍生物44号)、DprE1非共价抑制剂及MmpL3转运蛋白抑制剂(吲哚-2-甲酰胺类化合物)展现出高效抗菌活性。耐药机制研究发现,硝基咪唑类药物活化依赖Rv0077c代谢调控,而叶酸通路Rv2172c突变通过甲硫氨酸累积介导对氨基水杨酸耐药。新兴技术如CRISPRi通过抑制inhA基因增强抗生素效力,PROTAC技术通过降解ClpC1蛋白降低菌体存活。药物基因组学揭示NAT2乙酰化表型和ATP7B基因型显著影响异烟肼肝毒性风险,HLA-DPB1等位基因与药物不良反应相关。短程化疗方案BpaL(bedaquiline、pretomanid、linezolid)虽疗效显著(治愈率90%),但存在严重不良反应;替代方案BpaS(spectinamide 1599)及TBI-223组合展现出更优安全性。未来研发趋势强调多靶点联合治疗、耐药机制精准干预及分子诊断技术优化,以实现结核病治疗的高效化与个体化。

关键词: 分枝杆菌,结核, 药物靶标, 耐药机制, 药物基因组学

Abstract:

Tuberculosis, as a global public health challenge, faces severe tests in treatment due to the issue of drug resistance. Current research and development of anti-tuberculosis drugs focus on key targets such as mycobacterial cell wall synthesis (e.g., the mycolic acid synthesis pathway), energy metabolism, protein synthesis and degradation, DNA replication and repair, and host immune regulation. In the field of mycolic acid synthesis, Pks13-TE inhibitors (such as compound 44, N-aryl indole derivatives), non-covalent DprE1 inhibitors, and MmpL3 transporter inhibitors (indole-2-carboxamide compounds) have demonstrated high antibacterial activity. Studies on resistance mechanisms have found that the activation of nitroimidazole drugs depends on Rv0077c metabolic regulation, and folate pathway Rv2172c mutations mediate PAS resistance through methionine accumulation. Emerging technologies like CRISPRi enhance antibiotic efficacy by inhibiting the inhA gene, and PROTAC technology reduces bacterial survival by degrading the ClpC1 protein. Pharmacogenomics has revealed that NAT2 acetylation phenotypes and ATP7B genotypes significantly affect the risk of isoniazid-induced hepatotoxicity, and HLA-DPB1 alleles are associated with drug side effects. The short-course chemotherapy regimen BpaL (bedaquiline, pretomanid, linezolid) shows significant efficacy (90% cure rate) but has severe side effects; alternative regimens BpaS (spectinamide 1599) and TBI-223 combinations exhibit better safety profiles. Future research trends emphasize multi-target combination therapy, precision intervention in resistance mechanisms, and optimization of molecular diagnostic techniques to achieve the efficiency and individualization of tuberculosis treatment.

Key words: Mycobacterium tuberculosis, Drug targets, Resistance mechanisms, Pharmacogenomics

中图分类号: