结核与肺部疾病杂志 ›› 2025, Vol. 6 ›› Issue (5): 587-597.doi: 10.19983/j.issn.2096-8493.20250049
收稿日期:
2025-03-23
出版日期:
2025-10-20
发布日期:
2025-10-15
通信作者:
谢建平
E-mail:georgex@swu.edu.cn
基金资助:
Abulimiti Abudukadier1, Li Peibo2, Xie Jianping1,2()
Received:
2025-03-23
Online:
2025-10-20
Published:
2025-10-15
Contact:
Xie Jianping
E-mail:georgex@swu.edu.cn
Supported by:
摘要:
结核病仍然是全球公共卫生重大挑战。耐药结核病亟须研发新药。当前抗结核药物研发聚焦于分枝杆菌细胞壁合成(如分枝菌酸合成通路)、能量代谢、蛋白质合成与降解、DNA复制修复及宿主免疫调控等关键靶标。在分枝菌酸合成领域,Pks13-TE抑制剂(如N-芳基吲哚衍生物44号)、DprE1非共价抑制剂及MmpL3转运蛋白抑制剂(吲哚-2-甲酰胺类化合物)展现出高效抗菌活性。耐药机制研究发现,硝基咪唑类药物活化依赖Rv0077c代谢调控,而叶酸通路Rv2172c突变通过甲硫氨酸累积介导对氨基水杨酸耐药。新兴技术如CRISPRi通过抑制inhA基因增强抗生素效力,PROTAC技术通过降解ClpC1蛋白降低菌体存活。药物基因组学揭示NAT2乙酰化表型和ATP7B基因型显著影响异烟肼肝毒性风险,HLA-DPB1等位基因与药物不良反应相关。短程化疗方案BpaL(bedaquiline、pretomanid、linezolid)虽疗效显著(治愈率90%),但存在严重不良反应;替代方案BpaS(spectinamide 1599)及TBI-223组合展现出更优安全性。未来研发趋势强调多靶点联合治疗、耐药机制精准干预及分子诊断技术优化,以实现结核病治疗的高效化与个体化。
中图分类号:
阿卜力米提·阿卜杜喀迪尔, 李佩波, 谢建平. 2024年全球结核病药物研发进展:多靶点策略、耐药机制突破与个体化治疗[J]. 结核与肺部疾病杂志, 2025, 6(5): 587-597. doi: 10.19983/j.issn.2096-8493.20250049
Abulimiti Abudukadier, Li Peibo, Xie Jianping. 2024 global advances in tuberculosis drug development: multi-target strategies, breakthroughs in drug resistance mechanisms, and personalized treatment[J]. Journal of Tuberculosis and Lung Disease, 2025, 6(5): 587-597. doi: 10.19983/j.issn.2096-8493.20250049
[1] | 吴春艳. 结核病耐药性的发展趋势与新型抗结核药物的研发[C]// 中国防痨协会,重庆智飞生物制品股份有限公司.第35届中国防痨协会全国学术大会暨第四届中国防痨科技颁奖大会论文汇编(临床篇).贵州航天医院呼吸与危重症医学科, 2024:539. doi:10.26914/c.cnkihy.2024.040239. |
[2] | Cevik M, Thompson LC, Upton C, et al. Bedaquiline-pretomanid-moxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. Lancet Infect Dis, 2024, 24(9): 1003-1014. doi:10.1016/S1473-3099(24)00223-8. |
[3] | 李琦, 初乃惠. 基于临床需求,加快抗结核药物研发. 中国临床医生杂志, 2024, 52(2): 127-129. |
[4] | Zhang X, Lun S, Li YX, et al. Structure-based development of N-Arylindole derivatives as Pks 13 inhibitors against Mycobacterium tuberculosis. Eur J Med Chem, 2025, 283: 117148. doi:10.1016/j.ejmech.2024.117148. |
[5] | Liu T, Meng J, Wang B, et al. Identification of BMVC-8C3O as a novel Pks 13 inhibitor with anti-tuberculosis activity. Tuberculosis (Edinb), 2025, 150: 102579. doi:10.1016/j.tube.2024.102579. |
[6] | Krieger IV, Yalamanchili S, Dickson P, et al. Inhibitors of the Thioesterase Activity of Mycobacterium tuberculosis Pks 13 Discovered Using DNA-Encoded Chemical Library Screening. ACS Infect Dis, 2024, 10(5): 1561-1575. doi:10.1021/acsinfecdis.3c00592. |
[7] | Samoon R, Sau S, Roy A, et al. Development and Evaluation of Bis-benzothiazoles as a New Class of Benzothiazoles Targeting DprE1 as Antitubercular Agents. ACS Infect Dis, 2024, 10(9): 3320-3331. doi:10.1021/acsinfecdis.4c00415. |
[8] | Zhao L, Liu B, Tong HHY, et al. Inhibitor binding and disruption of coupled motions in MmpL 3 protein: Unraveling the mechanism of trehalose monomycolate transport. Protein Sci, 2024, 33(10): e5166. doi:10.1002/pro.5166. |
[9] | Ray R, Das S, Birangal SR, et al. Developing novel indoles as antitubercular agents and simulated annealing-based analysis of their binding with MmpL3. Future Med Chem, 2025, 17(1): 19-34. doi:10.1080/17568919.2024.2444872. |
[10] | Mi Kim Y, Park Y, Soon Son E, et al. Design, synthesis, biological evaluation study of spirocyclic POM analogues as novel MmpL 3 anti-tubercular agent. Bioorg Chem, 2024, 153: 107823. doi:10.1016/j.bioorg.2024.107823. |
[11] | Rani N, Rajmani RS, Surolia A. Identification of an Isoxazole Derivative as an Antitubercular Compound for Targeting the FadD Enzymes of Mycobacterium tuberculosis. J Med Chem, 2025, 68(1): 270-286. doi:10.1021/acs.jmedchem.4c01844. |
[12] | Kalera K, Liu R, Lim J, et al. Targeting Mycobacterium tuberculosis Persistence through Inhibition of the Trehalose Catalytic Shift. ACS Infect Dis, 2024, 10(4): 1391-1404. doi:10.1021/acsinfecdis.4c00138. |
[13] | Saha P, Sau S, Kalia NP, et al. Antitubercular activity of 2-mercaptobenzothiazole derivatives targeting Mycobacterium tuberculosis type Ⅱ NADH dehydrogenase. RSC Med Chem, 2024, 15(5): 1664-1674. doi:10.1039/d4md00118d. |
[14] | Saha P, Sau S, Kalia NP, et al. 2-Aryl-Benzoimidazoles as Type Ⅱ NADH Dehydrogenase Inhibitors of Mycobacterium tuberculosis. ACS Infect Dis, 2024, 10(10): 3699-3711. doi:10.1021/acsinfecdis.4c00710. |
[15] | Saha P, Das S, Indurthi HK, et al. Cytochrome bd oxidase: an emerging anti-tubercular drug target. RSC Med Chem, 2024, 15(3): 769-787. doi:10.1039/d3md00587a. |
[16] | Kovalova T, Krol S, Gamiz-Hernandez A P, et al. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A, 2024, 121(47): e2412780121. doi:10.1073/pnas.2412780121. |
[17] | Presloid CJ, Jiang J, Kandel P, et al. ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis. Mol Microbiol, 2025, 123(1): 16-30. doi:10.1111/mmi.15334. |
[18] | Won HI, Zinga S, Kandror O, et al. Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy. Nat Commun, 2024, 15(1): 4065. doi:10.1038/s41467-024-48506-8. |
[19] | Junk L, Schmiedel VM, Guha S, et al. Homo-BacPROTAC-induced degradation of ClpC 1 as a strategy against drug-resis-tant mycobacteria. Nat Commun, 2024, 15(1): 2005. doi:10.1038/s41467-024-46218-7. |
[20] | Woodgate J, Sumang FA, Salliss ME, et al. Mode of Action and Mechanisms of Resistance to the Unusual Polyglycosylated Thiopeptide Antibiotic Persiathiacin A. ACS Infect Dis, 2025, 11(1): 155-163. doi:10.1021/acsinfecdis.4c00503. |
[21] | Sterle M, Habjan E, Piga M, et al. Development of narrow-spectrum topoisomerase-targeting antibacterials against mycobacteria. Eur J Med Chem, 2024, 276: 116693. doi:10.1016/j.ejmech.2024.116693. |
[22] | Gedeon A, Yab E, Dinut A, et al. Molecular mechanism of a triazole-containing inhibitor of Mycobacterium tuberculosis DNA gyrase. iScience, 2024, 27(10): 110967. doi:10.1016/j.isci.2024.110967. |
[23] | Toth ZS, Leveles I, Nyiri K, et al. The homodimerization domain of the Stl repressor is crucial for efficient inhibition of mycobacterial dUTPase. Sci Rep, 2024, 14(1): 27171. doi:10.1038/s41598-024-76349-2. |
[24] | Wu J, Zhang Y, Li W, et al. Mycobacterium tuberculosis Suppresses Inflammatory Responses in Host through Its Cholesterol Metabolites. ACS Infect Dis, 2024, 10(10): 3650-3663. doi:10.1021/acsinfecdis.4c00529. |
[25] | Paterson RL, La Manna MP, Arena De Souza V, et al. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2024, 121(19): e2318003121. doi:10.1073/pnas.2318003121. |
[26] | Qin L, Xu J, Chen J, et al. Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth. Elife, 2024, 13: RP92737. doi:10.7554/eLife.92737. |
[27] | Yan MY, Li H, Qu YM, et al. CRISPR Screening and Comparative LC-MS Analysis Identify Genes Mediating Efficacy of Delamanid and Pretomanid against Mycobacterium tuberculosis. Adv Sci (Weinh), 2024, 11(39): e2400176. doi:10.1002/advs.202400176. |
[28] | Wang X, Jowsey WJ, Cheung CY, et al. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat Commun, 2024, 15(1): 9791. doi:10.1038/s41467-024-54072-w. |
[29] | Xu JT, Yu JF, Cheng T, et al. The T120P or M172V mutation on rv2172c confers high level para-aminosalicylic acid resistance in Mycobacterium tuberculosis Emerg Microbes Infect, 2024, 13(1): 2374030. doi:10.1080/22221751.2024.2374030. |
[30] | Jia H, Chu H, Dai G, et al. Rv1258c acts as a drug efflux pump and growth controlling factor in Mycobacterium tuberculosis. Tuberculosis (Edinb), 2022, 133: 102172. doi:10.1016/j.tube.2022.102172. |
[31] | Gao Y, Wei C, Luo L, et al. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Front Mol Biosci, 2024, 11: 1364494. doi:10.3389/fmolb.2024.1364494. |
[32] | Wang S, Wang K, Song K, et al. Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition. Nat Commun, 2024, 15(1): 7710. doi:10.1038/s41467-024-51948-9. |
[33] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 4: Treatment and care. Geneva: World Health Organization, 2025. |
[34] | Jeyasankar S, Kalapala YC, Sharma PR, et al. Antibacterial efficacy of mycobacteriophages against virulent Mycobacterium tuberculosis. BMC Microbiol, 2024, 24(1): 320. doi:10.1186/s12866-024-03474-3. |
[35] | Singpanomchai N, Ratthawongjirakul P. The CRISPR-dCas9 interference system suppresses inhA gene expression in Mycobacterium smegmatis. Sci Rep, 2024, 14(1): 26116. doi:10.1038/s41598-024-77442-2. |
[36] | Kim B, Kim J, Yoon SY, et al. HLA-DPB1*05:01 and HLA-A*11:01 Is Associated with Adverse Drug Reactions to Isoniazid and Rifampin for Treatment of Latent Tuberculosis Infection in South Korea. J Clin Med, 2024, 13(12): 3563. doi:10.3390/jcm13123563. |
[37] | Yoon JG, Jang DG, Cho SG, et al. Synergistic toxicity with copper contributes to NAT2-associated isoniazid toxicity. Exp Mol Med, 2024, 56(3): 570-582. doi:10.1038/s12276-024-01172-8. |
[38] | Ulanova V, Kivrane A, Viksna A, et al. Effect of NAT2, GSTM1 and CYP2E 1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships. Front Pharmacol, 2024, 15: 1332752. doi:10.3389/fphar.2024.1332752. |
[39] | Lee SW, Chen PT, Liu CW, et al. Polymorphism of CYP3A4* 18 is associated with anti-tuberculosis drug-induced hepatotoxicity. Pharmacogenomics, 2024, 25(5/6): 241-247. doi:10.1080/14622416.2024.2346069. |
[40] | Goletti D, Meintjes G, Andrade B B, et al. Insights from the 2024 WHO Global Tuberculosis Report-More Comprehensive Action, Innovation, and Investments required for achieving WHO End TB goals. Int J Infect Dis, 2025, 150: 107325. doi:10.1016/j.ijid.2024.107325. |
[41] | Zohaib Ali M, Dutt TS, Macneill A, et al. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. Elife, 2024, 13: RP96190. doi:10.7554/eLife.96190. |
[42] | Strydom N, Ernest JP, Imperial M, et al. Dose optimization of TBI-223 for enhanced therapeutic benefit compared to linezolid in antituberculosis regimen. Nat Commun, 2024, 15(1): 7311. doi:10.1038/s41467-024-50781-4. |
[43] | Roberts LW, Malone KM, Hunt M, et al. MmpR5 protein truncation and bedaquiline resistance in Mycobacterium tuberculosis isolates from South Africa: a genomic analysis. Lancet Microbe, 2024, 5(8): 100847. doi:10.1016/S2666-5247(24)00053-3. |
[1] | 中国中西医结合学会 中华中医药学会 中华医学会. 耐药肺结核中西医结合诊疗指南[J]. 结核与肺部疾病杂志, 2025, 6(5): 477-494. |
[2] | 中国防痨协会多学科诊疗分会, 深圳市第三人民医院(国家感染性疾病临床医学研究中心), 首都医科大学附属北京朝阳医院, 广东省肺癌研究所. 肺结核与肺癌共病诊疗专家共识[J]. 结核与肺部疾病杂志, 2025, 6(5): 495-515. |
[3] | 魏黛珏, 同重湘. 胸腔积液腺苷脱氨酶、全血γ-干扰素和白细胞介素2检测对结核性胸膜炎的诊断价值[J]. 结核与肺部疾病杂志, 2025, 6(5): 525-531. |
[4] | 陈芳, 赵亚军, 王瑞, 冯燕国, 张德智. 中枢神经系统结核合并垂体结核伴尿崩症一例并文献复习[J]. 结核与肺部疾病杂志, 2025, 6(5): 532-537. |
[5] | 张颖, 叶云, 左秀英, 丁加琪, 王芳. 肺结核合并糖尿病患者营养管理的最佳证据总结[J]. 结核与肺部疾病杂志, 2025, 6(5): 538-543. |
[6] | 赵静, 廖影, 庞艳, 王蕾, 涂龙成, 游茂林, 何高琴. 2018—2024年重庆市梁平区肺结核患者就诊延迟的变化趋势及影响因素分析[J]. 结核与肺部疾病杂志, 2025, 6(5): 558-565. |
[7] | 安源, 白云龙, 赵庆龙, 姜雪, 潘艳, 杨帆. 2018—2022年吉林省利福平耐药肺结核患者特征及治疗情况分析[J]. 结核与肺部疾病杂志, 2025, 6(5): 566-572. |
[8] | 叶锦欣, 昌思思, 蒋贵林, 尹婷. 2014—2023年昆明市65岁及以上老年肺结核患者流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(5): 573-578. |
[9] | 侯文俊, 田飞飞, 张时雨, 张耀文, 豆亚美, 薛涵, 崔虹艳. 2022—2024年北京市大兴区肺结核合并糖尿病及高血压患者的流行特征及治疗转归情况[J]. 结核与肺部疾病杂志, 2025, 6(5): 579-586. |
[10] | 王巍松, 韩玮欣, 孟艺哲, 李军霞, 张亚楠. 难治性结核性脑膜炎三例[J]. 结核与肺部疾病杂志, 2025, 6(5): 609-612. |
[11] | 段鸿飞. 《世界卫生组织endTB方案治疗耐多药结核病指南》解读[J]. 结核与肺部疾病杂志, 2025, 6(4): 361-364. |
[12] | 中国防痨协会结核病控制专业分会, 中国防痨协会标准化专业分会, 中国防痨协会老年结核病防治专业分会. 结核分枝杆菌感染检测技术应用专家共识[J]. 结核与肺部疾病杂志, 2025, 6(4): 365-381. |
[13] | 魏云霞, 王鑫, 林红霞, 李义帅. 血清可溶性程序性死亡受体1与重症监护病房中肺结核患者病情及预后的关系研究[J]. 结核与肺部疾病杂志, 2025, 6(4): 426-431. |
[14] | 柳静, 赵月娟. 高海拔环境下肺结核与细菌性肺炎的超声影像学特征比较[J]. 结核与肺部疾病杂志, 2025, 6(4): 432-435. |
[15] | 刘彩芳, 宗华, 高云飞, 严瑾. 不同剂量艾司氯胺酮对胸腔镜手术肺结核患者围术期肺功能及术后肺部并发症的影响[J]. 结核与肺部疾病杂志, 2025, 6(4): 436-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||