Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (2): 164-168.doi: 10.19983/j.issn.2096-8493.20230016
• Review Articles • Previous Articles Next Articles
Received:
2023-01-09
Online:
2023-04-20
Published:
2023-04-07
Contact:
Chang Chun, Email: CLC Number:
Hu Tingting, Chang Chun. The role of ceramide and ceramide synthetase in asthma[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(2): 164-168. doi: 10.19983/j.issn.2096-8493.20230016
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20230016
[1] |
Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet, 2019, 394(10196): 407-418. doi:10.1016/S0140-6736(19)31147-X.
doi: S0140-6736(19)31147-X pmid: 31230828 |
[2] |
Dharmage SC, Perret JL, Custovic A. Epidemiology of Asthma in Children and Adults. Front Pediatr, 2019, 7: 246. doi:10.3389/fped.2019.00246.
doi: 10.3389/fped.2019.00246 pmid: 31275909 |
[3] |
Chaurasia B, Summers SA. Ceramides in Metabolism: Key Lipotoxic Players. Annu Rev Physiol, 2021, 83: 303-330. doi:10.1146/annurev-physiol-031620-093815.
doi: 10.1146/annurev-physiol-031620-093815 pmid: 33158378 |
[4] |
Levy M, Futerman AH. Mammalian ceramide synthases. IUBMB life, 2010, 62(5): 347-356. doi:10.1002/iub.319.
doi: 10.1002/iub.319 pmid: 20222015 |
[5] |
Tidhar R, Zelnik ID, Volpert G, et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J Biol Chem, 2018, 293(25): 9912-9921. doi:10.1074/jbc.RA118.001936.
doi: 10.1074/jbc.RA118.001936 pmid: 29632068 |
[6] |
Garic'D, De Sanctis JB, Shah J, et al. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res, 2019, 74: 130-144. doi:10.1016/j.plipres.2019.03.001.
doi: S0163-7827(19)30011-6 pmid: 30876862 |
[7] |
Agache I, Akdis CA. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine. Allergol Int, 2016, 65(3): 243-252. doi:10.1016/j.alit.2016.04.011.
doi: 10.1016/j.alit.2016.04.011 pmid: 27282212 |
[8] |
Sofi MH, Heinrichs J, Dany M, et al. Ceramide synthesis regulates T cell activity and GVHD development. JCI insight, 2017, 2(10): e91701. doi:10.1172/jci.insight.91701.
doi: 10.1172/jci.insight.91701 URL |
[9] |
Shin SH, Cho KA, Yoon HS, et al. Ceramide Synthase 2 Null Mice Are Protected from Ovalbumin-Induced Asthma with Higher T Cell Receptor Signal Strength in CD4+ T Cells. Int J Mol Sci, 2021, 22(5):2713. doi:10.3390/ijms22052713.
doi: 10.3390/ijms22052713 URL |
[10] |
Robinson GA, Waddington KE, Pineda-Torra I, et al. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function. Front Immunol, 2017, 8: 1636. doi:10.3389/fimmu.2017.01636.
doi: 10.3389/fimmu.2017.01636 pmid: 29225604 |
[11] |
Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(6): 1469-1485. doi:10.1016/j.cell.2021.02.016.
doi: 10.1016/j.cell.2021.02.016 pmid: 33711259 |
[12] |
Kim SH, Jung HW, Kim M, et al. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy, 2020, 75(8): 1991-2004. doi:10.1111/all.14236.
doi: 10.1111/all.14236 URL |
[13] |
James BN, Oyeniran C, Sturgill JL, et al. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol, 2021, 147(5): 1936-1948.e9. doi:10.1016/j.jaci.2020.10.024.
doi: 10.1016/j.jaci.2020.10.024 URL |
[14] |
Kamocki K, Van Demark M, Fisher A, et al. RTP801 is required for ceramide-induced cell-specific death in the murine lung. Am J Respir Cell Mol Biol, 2013, 48(1): 87-93. doi:10.1165/rcmb.2012-0254OC.
doi: 10.1165/rcmb.2012-0254OC URL |
[15] |
Ono JG, Worgall TS, Worgall S. Airway reactivity and sphingolipids-implications for childhood asthma. Mol Cell Pediatr, 2015, 2(1): 13. doi:10.1186/s40348-015-0025-3.
doi: 10.1186/s40348-015-0025-3 pmid: 26637347 |
[16] |
Nakamura Y, Nakashima S, Ojio K, et al. Ceramide inhibits IgE-mediated activation of phospholipase D, but not of phospholipase C, in rat basophilic leukemia (RBL-2H3) cells. J Immunol, 1996, 156(1): 256-262.
pmid: 8598470 |
[17] |
Izawa K, Yamanishi Y, Maehara A, et al. The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide. Immunity, 2012, 37(5): 827-839. doi:10.1016/j.immuni.2012.08.018.
doi: 10.1016/j.immuni.2012.08.018 pmid: 23123064 |
[18] |
Robida PA, Chumanevich AP, Gandy AO, et al. Skin Mast Cell-Driven Ceramides Drive Early Apoptosis in Pre-Symptoma-tic Eczema in Mice. Int J Mol Sci, 2021, 22(15): 7815. doi:10.3390/ijms22157851.
doi: 10.3390/ijms22157851 URL |
[19] |
Itakura A, Tanaka A, Aioi A, et al. Ceramide and sphingosine rapidly induce apoptosis of murine mast cells supported by interleukin-3 and stem cell factor. Exp Hematol, 2002, 30(3): 272-278. doi:10.1016/s0301-472x(01)00790-1.
doi: 10.1016/s0301-472x(01)00790-1 pmid: 11882365 |
[20] |
Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med, 2012, 18(5):684-692. doi:10.1038/nm.2737.
doi: 10.1038/nm.2737 pmid: 22561832 |
[21] |
Juncadella IJ, Kadl A, Sharma AK, et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature, 2013, 493(7433): 547-551. doi:10.1038/nature11714.
doi: 10.1038/nature11714 |
[22] |
Teichgräber V, Ulrich M, Endlich N, et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med, 2008, 14(4): 382-391. doi:10.1038/nm1748.
doi: 10.1038/nm1748 pmid: 18376404 |
[23] |
Thomas RL Jr, Matsko CM, Lotze MT, et al. Mass spectrometric identification of increased C 16 ceramide levels during apoptosis. J Biol Chem, 1999, 274(43): 30580-30588. doi:10.1074/jbc.274.43.30580.
doi: 10.1074/jbc.274.43.30580 pmid: 10521441 |
[24] |
Kothari PH, Qiu W, Croteau-Chonka DC, et al. Role of local CpG DNA methylation in mediating the 17q 21 asthma susceptibility gasdermin B (GSDMB)/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) expression quantitative trait locus. J Allergy Clin Immunol, 2018, 141(6): 2282-2286.e6. doi:10.1016/j.jaci.2017.11.057.
doi: S0091-6749(18)30112-X pmid: 29374573 |
[25] |
Breslow DK, Collins SR, Bodenmiller B, et al. Orm family proteins mediate sphingolipid homeostasis. Nature, 2010, 463(7284): 1048-1053. doi:10.1038/nature08787.
doi: 10.1038/nature08787 |
[26] |
Worgall TS. Sphingolipids, ORMDL3 and asthma: what is the evidence? Curr Opin Clin Nutr Metab Care, 2017, 20(2): 99-103. doi:10.1097/MCO.0000000000000349.
doi: 10.1097/MCO.0000000000000349 URL |
[27] |
Oyeniran C, Sturgill JL, Hait NC, et al. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and ceramide exacerbates allergic asthma in mice. J Allergy Clin Immunol, 2015, 136(4): 1035-1046.e6. doi:10.1016/j.jaci.2015.02.031.
doi: 10.1016/j.jaci.2015.02.031 pmid: 25842287 |
[28] |
Siow D, Sunkara M, Dunn TM, et al. ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL 3 expression on sphingolipid biosynthesis. J Lipid Res, 2015, 56(4): 898-908. doi:10.1194/jlr.M057539.
doi: 10.1194/jlr.M057539 URL |
[29] |
Miller M, Rosenthal P, Beppu A, et al. Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. J Allergy Clin Immunol, 2017, 139(4): 1373-1376.e4. doi:10.1016/j.jaci.2016.08.053.
doi: S0091-6749(16)31272-6 pmid: 27826095 |
[30] |
Grösch S, Schiffmann S, Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res, 2012, 51(1): 50-62. doi:10.1016/j.plipres.2011.11.001.
doi: 10.1016/j.plipres.2011.11.001 pmid: 22133871 |
[31] |
Pullmannová P, Pavlíková L, Kovácˇik A, et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys Chem, 2017, 224: 20-31. doi:10.1016/j.bpc.2017.03.004.
doi: S0301-4622(16)30463-X pmid: 28363088 |
[32] |
Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem, 2002, 277(30): 26796-26803. doi:10.1074/jbc.M200754200.
doi: 10.1074/jbc.M200754200 pmid: 12006562 |
[33] |
Stiban J, Perera M. Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis. Biochim Biophys Acta, 2015, 1848(2): 561-567. doi:10.1016/j.bbamem.2014.11.018.
doi: 10.1016/j.bbamem.2014.11.018 pmid: 25462172 |
[34] |
Imgrund S, Hartmann D, Farwanah H, et al. Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem, 2009, 284(48): 33549-33560. doi:10.1074/jbc.M109.031971.
doi: 10.1074/jbc.M109.031971 pmid: 19801672 |
[35] |
Petrache I, Kamocki K, Poirier C, et al. Ceramide synthases expression and role of ceramide synthase-2 in the lung: insight from human lung cells and mouse models. PLoS One, 2013, 8(5): e62968. doi:10.1371/journal.pone.0062968.
doi: 10.1371/journal.pone.0062968 URL |
[36] |
Pewzner-Jung Y, Park H, Laviad EL, et al. A critical role for ceramide synthase 2 in liver homeostasis: I. alterations in lipid metabolic pathways. J Biol Chem, 2010, 285(14): 10902-10910. doi:10.1074/jbc.M109.077594.
doi: 10.1074/jbc.M109.077594 pmid: 20110363 |
[37] |
Petrache I, Petrusca DN. The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol, 2013 (216): 247-264. doi:10.1007/978-3-7091-1511-4_12.
doi: 10.1007/978-3-7091-1511-4_12 pmid: 23563660 |
[38] |
Choi Y, Kim M, Kim SJ, et al. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy, 2020, 75(11): 2858-2866. doi:10.1111/all.14366.
doi: 10.1111/all.14366 URL |
[39] |
Hartmann D, Lucks J, Fuchs S, et al. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol, 2012, 44(4): 620-628. doi:10.1016/j.biocel.2011.12.019.
doi: 10.1016/j.biocel.2011.12.019 pmid: 22230369 |
[40] |
Kajander K, Myllyluoma E, Kyrönpalo S, et al. Elevated pro-inflammatory and lipotoxic mucosal lipids characterise irritable bowel syndrome. World J Gastroenterol, 2009, 15(48): 6068-6074. doi:10.3748/wjg.15.6068.
doi: 10.3748/wjg.15.6068 URL |
[1] | Huang Junwen, Chen Ying, Cai Shaoxi, Zhao Haijin. Research progress of targeting bronchial epithelium in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 153-157. |
[2] | Wang Zhongzhao, Tang Hao. Research progress of airway remodeling mechanism in asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 158-163. |
[3] | Ren Tantan, Zhan Senlin, Wang Yuxiang, Yu Hong, Zheng Junfeng, Yang Min, Deng Guofang, Zhang Peize. Clinical features and literature review of active tuberculosis associated with PD-1/PD-L1 pathway inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 27-32. |
[4] | Yan Jinyan, Li Xiaomin, Ma Xiang. Research progress on the mechanism of there relationship between asthma and pertussisin children [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 78-84. |
[5] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[6] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[7] | Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 415-419. |
[8] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[9] | Li Yuan, Guo Ruru, Lyu Liangjing. Research progress of connective tissue disease and tuberculosis comorbidity [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 309-314. |
[10] | Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 320-324. |
[11] | Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 328-333. |
[12] | Zhou Yinan, Zhu Huili. Research progress of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 338-342. |
[13] | ZHANG Yan-kun, GUAN Yan, ZHAI Jing-jie, HAN Zhao. Application of anti-neovascular endothelial growth factor therapy in tuberculous chorioretinopathy: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 222-226. |
[14] | SI Fen, WANG Lin. Research progress on pulmonary rehabilitation care of patients with chronic obstructive pulmonary disease in stable stage [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 242-246. |
[15] | JIANG Ge-ge, LIANG Yuan, DU Li-na, WU Jian-lin. Research progress of CT roundness measurement in evaluating the invasiveness of GGN-like lung adenocarcinoma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 158-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||