Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (4): 328-333.doi: 10.19983/j.issn.2096-8493.20220073
• Review Articles • Previous Articles Next Articles
Lin Huimin1, Fu Yu1, Fang Zhangfu1,2, Xie Jiaxing1,3()
Received:
2022-04-20
Online:
2022-08-20
Published:
2022-08-16
Contact:
Xie Jiaxing
E-mail:jiaxingxie@126.com
Supported by:
CLC Number:
Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(4): 328-333. doi: 10.19983/j.issn.2096-8493.20220073
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220073
[1] |
GBD 2015 Chronic Respiratory Disease Collaborators Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med, 2017, 5 (9): 691-706. doi: 10.1016/S2213-2600(17)30293-X.
doi: 10.1016/S2213-2600(17)30293-X URL |
[2] |
Heaney LG, Perez de Llano L, Al-Ahmad M, et al. Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest, 2021, 160 (3): 814-830. doi: 10.1016/j.chest.2021.04.013.
doi: 10.1016/j.chest.2021.04.013 pmid: 33887242 |
[3] |
de Groot JC, Ten Brinke A, Bel EH. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res, 2015, 1 (1): 00024-2015. doi: 10.1183/23120541.00024-2015.
doi: 10.1183/23120541.00024-2015 |
[4] |
Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(9): 2521-2522. doi: 10.1016/j.cell.2021.04.019.
doi: 10.1016/j.cell.2021.04.019 URL |
[5] |
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol, 2019, 144 (1): 1-12. doi: 10.1016/j.jaci.2019.05.031.
doi: 10.1016/j.jaci.2019.05.031 URL |
[6] |
Van Hulst G, Bureau F, Desmet CJ. Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int J Mol Sci, 2021, 22 (18): 10150. doi: 10.3390/ijms221810150.
doi: 10.3390/ijms221810150 URL |
[7] |
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol, 2015, 16(1): 45-56. doi: 10.1038/ni.3049.
doi: 10.1038/ni.3049 pmid: 25521684 |
[8] |
Bohrer AC, Castro E, Hu Z, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med, 2021, 218 (10): e20210469. doi: 10.1084/jem.20210469.
doi: 10.1084/jem.20210469 |
[9] |
Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol, 2017, 17(12): 746-760. doi: 10.1038/nri.2017.95.
doi: 10.1038/nri.2017.95 pmid: 28891557 |
[10] |
Shah K, Ignacio A, McCoy KD, et al. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol, 2020, 13(4): 574-583. doi: 10.1038/s41385-020-0281-y.
doi: 10.1038/s41385-020-0281-y URL |
[11] |
Mesnil C, Raulier S, Paulissen G, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest, 2016, 126 (9): 3279-3295. doi: 10.1172/JCI85664.
doi: 10.1172/JCI85664 URL |
[12] |
Van Hulst G, Batugedara HM, Jorssen J, et al. Eosinophil diversity in asthma. Biochem Pharmacol, 2020, 179: 113963. doi: 10.1016/j.bcp.2020.113963.
doi: 10.1016/j.bcp.2020.113963 URL |
[13] |
Wechsler ME, Munitz A, Ackerman SJ, et al. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin Proc, 2021, 96 (10): 2694-2707. doi: 10.1016/j.mayocp.2021.04.025.
doi: 10.1016/j.mayocp.2021.04.025 pmid: 34538424 |
[14] |
Granger V, Zerimech F, Arab J, et al. Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults. Thorax, 2022, 77(6): 552-562. doi: 10.1136/thoraxjnl-2021-217343.
doi: 10.1136/thoraxjnl-2021-217343 URL |
[15] |
Choi Y, Le Pham D, Lee DH, et al. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med, 2018, 50 (8): 1-8. doi: 10.1038/s12276-018-0136-8.
doi: 10.1038/s12276-018-0136-8 |
[16] |
Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol, 2016, 137 (1): 258-267. doi: 10.1016/j.jaci.2015.04.041.
doi: 10.1016/j.jaci.2015.04.041 URL |
[17] |
Lu Y, Huang Y, Li J, et al. Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nat Cell Biol, 2021, 23 (10): 1060-1072. doi: 10.1038/s41556-021-00762-2.
doi: 10.1038/s41556-021-00762-2 URL |
[18] |
Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol, 2020, 146 (2): 377-389.e10. doi: 10.1016/j.jaci.2020.01.013.
doi: S0091-6749(20)30100-7 pmid: 31982451 |
[19] |
Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science, 2019, 364 (6442): eaaw4295. doi: 10.1126/science.aaw4295.
doi: 10.1126/science.aaw4295 |
[20] |
Mack EA, Pear WS. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr Opin Hematol, 2020, 27 (1): 27-33. doi: 10.1097/MOH.0000000000000552.
doi: 10.1097/MOH.0000000000000552 URL |
[21] |
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosino-phil Granulocytes. Biology (Basel), 2020, 9 (12): 457. doi: 10.3390/biology9120457.
doi: 10.3390/biology9120457 |
[22] |
Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine, 2015, 75 (1): 68-78. doi: 10.1016/j.cyto.2015.05.014.
doi: 10.1016/j.cyto.2015.05.014 URL |
[23] |
Godar M, Deswarte K, Vergote K, et al. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J Allergy Clin Immunol, 2018, 142 (4): 1185-1193. e4. doi: 10.1016/j.jaci.2018.06.002.
doi: 10.1016/j.jaci.2018.06.002 URL |
[24] |
Gowthaman U, Chen JS, Zhang B, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365 (6456): eaaw6433. doi: 10.1126/science.aaw6433.
doi: 10.1126/science.aaw6433 |
[25] |
Sugita K, Steer CA, Martinez-Gonzalez I, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol, 2018, 141 (1): 300-310.e11. doi: 10.1016/j.jaci.2017.02.038.
doi: 10.1016/j.jaci.2017.02.038 URL |
[26] |
Wang W, Li Y, Lv Z, et al. Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa. J Immunol, 2018, 201 (8): 2221-2231. doi: 10.4049/jimmunol.1800709.
doi: 10.4049/jimmunol.1800709 pmid: 30185520 |
[27] |
李赞华. 白细胞介素25与33在支气管哮喘发生中的作用. 结核病与肺部健康杂志, 2017, 6 (2): 190-192. doi: 10.3969/j.issn.2095-3755.2017.02.024.
doi: 10.3969/j.issn.2095-3755.2017.02.024 |
[28] |
Machida K, Aw M, Salter BMA, et al. The Role of the TL1A/DR3 Axis in the Activation of Group 2 Innate Lym-phoid Cells in Subjects with Eosinophilic Asthma. Am J Respir Crit Care Med, 2020, 202 (8): 1105-1114. doi: 10.1164/rccm.201909-1722OC.
doi: 10.1164/rccm.201909-1722OC URL |
[29] |
Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med, 2013, 19 (8): 977-979. doi: 10.1038/nm.3300.
doi: 10.1038/nm.3300 pmid: 23921745 |
[30] |
Brandt EB, Bolcas PE, Ruff BP, et al. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy, 2020, 75 (9): 2254-2266. doi: 10.1111/all.14181.
doi: 10.1111/all.14181 pmid: 31922608 |
[31] |
Brandt EB, Bolcas PE, Ruff BP, et al. TSLP contributes to allergic airway inflammation induced by diesel exhaust particle exposure in an experimental model of severe asthma. Clin Exp Allergy, 2020, 50(1):121-124. doi: 10.1111/cea.13512.
doi: 10.1111/cea.13512 pmid: 31610053 |
[32] |
Michaudel C, Mackowiak C, Maillet I, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33 J Allergy Clin Immunol, 2018, 142(3): 942-958. doi: 10.1016/j.jaci.2017.11.044.
doi: S0091-6749(18)30028-9 pmid: 29331644 |
[33] |
Hiraishi Y, Yamaguchi S, Yoshizaki T, et al. IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep, 2018, 8 (1): 18052. doi: 10.1038/s41598-018-36440-x.
doi: 10.1038/s41598-018-36440-x URL |
[34] |
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest, 2019, 129(4): 1441-1451. doi: 10.1172/JCI124606.
doi: 10.1172/JCI124606 URL |
[35] |
Kato A. Group 2 Innate Lymphoid Cells in Airway Diseases. Chest, 2019, 156 (1): 141-149. doi: 10.1016/j.chest.2019.04.101.
doi: 10.1016/j.chest.2019.04.101 URL |
[36] |
Lee HS, Park DE, Lee JW, et al. Role of interleukin-23 in the development of nonallergic eosinophilic inflammation in a murine model of asthma. Exp Mol Med, 2020, 52(1): 92-104. doi: 10.1038/s12276-019-0361-9.
doi: 10.1038/s12276-019-0361-9 URL |
[37] |
Wangberg H, White AA. Aspirin-exacerbated respiratory disease. Curr Opin Immunol, 2020, 66: 9-13. doi: 10.1016/j.coi.2020.02.006.
doi: S0952-7915(20)30022-4 pmid: 32299015 |
[38] |
Li KL, Lee AY, Abuzeid WM. Aspirin Exacerbated Respiratory Disease: Epidemiology, Pathophysiology, and ManagementMed Sci (Basel), 2019, 7(3): 45. doi: 10.3390/medsci7030045.
doi: 10.3390/medsci7030045 |
[39] |
Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J, 2021, 59 (1): 2102730. doi: 10.1183/13993003.02730-2021.
doi: 10.1183/13993003.02730-2021 URL |
[40] |
Bakakos A, Loukides S, Bakakos P. Severe Eosinophilic Asthma. J Clin Med, 2019, 8(9): 1375. doi: 10.3390/jcm8091375.
doi: 10.3390/jcm8091375 URL |
[41] |
Burgess JK, Jonker MR, Berg M, et al.Periostin: contributor to abnormal airway epithelial function in asthma? Eur Respir J, 2021, 57 (2): 2001286. doi: 10.1183/13993003.01286-2020.
doi: 10.1183/13993003.01286-2020 URL |
[42] |
Chen M, Shepard K 2nd, Yang M, et al. Overlap of allergic, eosinophilic and type 2 inflammatory subtypes in moderate-to-severe asthma. Clin Exp Allergy, 2021, 51 (4): 546-555. doi: 10.1111/cea.13790.
doi: 10.1111/cea.13790 URL |
[43] |
de Groot JC, Storm H, Amelink M, et al. Clinical profile of patients with adult-onset eosinophilic asthma. ERJ Open Res, 2016, 2 (2): 00100-2015. doi: 10.1183/23120541.00100-2015.
doi: 10.1183/23120541.00100-2015 |
[44] |
Bousquet J, Humbert M, Gibson PG, et al. Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. J Allergy Clin Immunol Pract, 2021, 9 (7): 2702-2714. doi: 10.1016/j.jaip.2021.01.011.
doi: 10.1016/j.jaip.2021.01.011 URL |
[45] |
Humbert M, Taillé C, Mala L, et al. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study. Eur Respir J, 2018, 51 (5):1702523. doi: 10.1183/13993003.02523-2017.
doi: 10.1183/13993003.02523-2017 |
[46] |
Busse WW, Bleecker ER, FitzGerald JM, et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med, 2019, 7 (1): 46-59. doi: 10.1016/S2213-2600(18)30406-5.
doi: 10.1016/S2213-2600(18)30406-5 URL |
[47] |
Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: A systematic review of the EAACI guidelines-Recommendations on the use of biologicals in severe asthma. Allergy, 2020, 75 (5): 1058-1068. doi: 10.1111/all.14268.
doi: 10.1111/all.14268 pmid: 32154939 |
[48] |
Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines-recommendations on the use of biologicals in severe asthma. Allergy, 2020, 75 (5): 1023-1042. doi: 10.1111/all.14221.
doi: 10.1111/all.14221 pmid: 32034960 |
[49] |
Corren J, Parnes JR, Wang L, et al. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med, 2017, 377 (10): 936-946. doi: 10.1056/NEJMoa1704064.
doi: 10.1056/NEJMoa1704064 URL |
[50] |
Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med, 2021, 384 (19): 1800-1809. doi: 10.1056/NEJMoa2034975.
doi: 10.1056/NEJMoa2034975 URL |
[1] | He Yanchao, Jie Zhijun. Strategy of early screening for active pulmonary tuberculosis in general hospital [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 334-337. |
[2] | Zhou Yinan, Zhu Huili. Research progress of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 338-342. |
[3] | ZHANG Yan-kun, GUAN Yan, HAN Zhao, ZHANG Zhi-hua. Clinical characteristics of 18 cases of tuberculous posterior uveitis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 216-221. |
[4] | HAN Wei-xin, ZHAO Li-ming, CHENG Shan-shan, MENG Yi-zhe, CHEN Yan-qiang. Clinical characteristics of 15 cases of central nervous system tuberculosis complicated with cerebral endarteritis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(3): 227-230. |
[5] | GUO Hua-zheng, XING Zhen-chuan. Analysis of characteristics, diagnosis and referral of pulmonary tuberculosis in respiratory wards of a general hospital in Beijing [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 110-117. |
[6] | ZHU Dan, CHEN Yan, SHUANG Qing-cui, ZENG Hui-hui. Clinical observation of patients with acute axcerbation of chronic obstructive pulmonary disease and patients with chronic obstructive pulmonary disease plus community-acquired pneumonia [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 118-124. |
[7] | LIU Hui-min, TIAN Yao, BEI Cheng-li, FU Man-jiao. Application and prospect of immunological detection technology for active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 70-74. |
[8] | WEI Jian-hua, GUO Tao, GAO Xiao-na, WU Wei, GUO Lei. Clinical characteristics and treatment outcome of 151 hospitalized students with tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 330-335. |
[9] | HUANG Lin-huan, ZHOU Hou-shi, LIN Wan, LIN Qi. Clinical analysis of 17 cases with non-tuberculous mycobacterium disease [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 352-354. |
[10] | WU Di, FAN Xin-xin, SHEN Jian-shan, LIN You-fei, CHEN Xiao-hong, HUANG Ming-xiang, CHEN Li-zhou. Diagnostic value of combined detection of coagulation screening indicators and D-dimer in clinical classification of COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 355-360. |
[11] | ZHANG Qun-cheng, LI Xiang-nan, XU Zhi-wei, SUN Guan-nan, YANG Hui-zhen, CHENG Dong-jun, ZHANG Xiao-ju. Diagnostic value of bronchoscopic cryobiopsy for diagnosing peripheral lung nodule [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 205-209. |
[12] | LIU Xin, WU Qian-hong, CHEN Qi-liang, LI Jun-xiao, XU Jun-li, GUO Le. Rare angiosarcoma of thoracic soft tissue: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 210-215. |
[13] | WANG Yi, LU Jing, LI Su-mei, ZHU Xue-feng, ZENG Ling-wu. Clinical characteristics and drug resistance of 84 patients with non-tuberculous mycobacterium pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 223-227. |
[14] | CUI Kai, ZHANG Xiao-ju. Research progress on the application of biomarkers in differential diagnosis of benign and malignant pulmonary nodules [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 273-276. |
[15] | LI Jing, ZHANG Yan, WU Qian-hong. Research progress on free DNA detection of Mycobacterium tuberculosis of non-sputum samples in tuberculosis diagnosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 277-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||