结核与肺部疾病杂志 ›› 2025, Vol. 6 ›› Issue (1): 79-86.doi: 10.19983/j.issn.2096-8493.2024011

• 论著 • 上一篇    下一篇

基于神经网络的国内呼吸病学、结核病学核心期刊论文热度预测初探

郭萌1, 朱玉辉2, 范永德1(), 李敬文1()   

  1. 1《中国防痨杂志》期刊社,北京 100035
    2中国人民大学统计学院,北京 100872
  • 收稿日期:2023-12-09 出版日期:2025-02-20 发布日期:2025-02-20
  • 通信作者: 范永德,Email:fanyongde@126.com;李敬文,Email:lijwflzz@163.com

Preliminary study on the predicting of the popularity of papers in the core journals of respiratory disease and tuberculosis in China based on neural network

Guo Meng1, Zhu Yuhui2, Fan Yongde1(), Li Jingwen1()   

  1. 1Chinese Journal of Antituberculosis Publishing House, Beijing 100035, China
    2School of Statistics, Renmin University of China, Beijing 100872, China
  • Received:2023-12-09 Online:2025-02-20 Published:2025-02-20
  • Contact: Fan Yongde, Email: fanyongde@126.com;Li Jingwen, Email: lijwflzz@163.com

摘要:

目的:在神经网络这一基于统计学的模型广泛应用于微博、微信公众号热度预测的背景下,探索神经网络应用于学术论文领域热度预测的价值,为评价学术论文水平提供一种新的辅助检测手段。方法:以2019—2021年国内“呼吸病学、结核病学”核心期刊(《中国防痨杂志》《中华结核和呼吸杂志》《临床肺科杂志》《中国呼吸与危重监护杂志》《国际呼吸杂志》《中华肺部疾病杂志(电子版)》)已发表的论文作为样本,采取蕴含文章重要信息的标题、摘要、关键词及文章发表天数作为神经网络的输入层,并通过分词工具对输入层进行分词获取特征,进而预测文章的被引用量。结果:2019—2021年,“呼吸病学、结核病学”核心期刊共计发表论文4729篇,2019—2021年各年分别发表论文1690、1534、1505篇。根据被引频次的分类,“呼吸病学、结核病学”核心期刊2019—2021年高被引论文(被引频次30~250次)、中被引论文(被引频次4~29次)、低被引论文(被引频次1~3次)、零被引论文分别为46、1362、1872、1449篇,分别占0.97%、28.80%、39.59%、30.64%。通过神经网络分析,对文章被引用量预测的准确率、精确率和召回率分别达到99.68%、99.63%和99.65%。结论:作为人工智能技术的一种方法,神经网络可逐步引入到学术领域,为客观公正地评判稿件水平提供一种辅助的检测手段,以弥补编辑初审和外审存在的局限性。

关键词: 神经网络(计算机), 期刊论文, 预测

Abstract:

Objective: The neural network, a model based on statistics, is widely used to predict the popularity of microblog and WeChat official account. Based on that, this study aimed to explore the value of neural network in predicting the popularity of academic papers, and to provide a new auxiliary detection method for evaluating the level of academic paper. Methods: The titles, abstracts, keywords and publication days of papers from the domestic core journals of “Respiratory disease and tuberculosis” (Chinese Journal of Antituberculosis, Chinese Journal of Tuberculosis and Respiratory Diseases, Journal of Clinical Pulmonary Medicine, Chinese Journal of Respiratory and Critical Care Medicine, International Journal of Respiration, and Chinese Journal of Lung Diseases (Electronic Edition)) were collected as the input layer of the neural network from 2019 to 2021, and the features was obtained using segmentation tools to segment the input layer, thereby the citation count of the papers was predicted. Results: From 2019 to 2021, a total of 4729 papers were published in the core journals of “Respiratory disease and tuberculosis”, and 1690, 1534 and 1505 papers were published in each year from 2019 to 2021. According to the classification of citation frequency, from 2019 to 2021, the number of highly cited papers (30 to 250 times), moderately cited papers (4 to 29 times), low cited papers (1 to 3 times), and zero cited papers in the core journals of “Respiratory disease and tuberculosis” were 46, 1362, 1872, and 1449, respectively, accounting for 0.97%, 28.80%, 39.59%, and 30.64%. Using neural networks, the accuracy, precision, and recall of predicting article citation rates had reached 99.68%, 99.63%, and 99.65%, respectively. Conclusion: As a method of artificial intelligence technology, neural networks could be gradually introduced into the academic field to provide an auxiliary detection method for objectively and fairly evaluating the level of manuscripts, in order to compensate for the limitations of initial and external review by editors.

Key words: Neural networks (computer), Journal article, Forecasting

中图分类号: