结核与肺部疾病杂志 ›› 2022, Vol. 3 ›› Issue (4): 320-324.doi: 10.19983/j.issn.2096-8493.20220014
收稿日期:
2022-02-10
出版日期:
2022-08-20
发布日期:
2022-08-16
通信作者:
李锋
E-mail:dr_lif08@126.com
基金资助:
Received:
2022-02-10
Online:
2022-08-20
Published:
2022-08-16
Contact:
Li Feng
E-mail:dr_lif08@126.com
Supported by:
摘要:
肺结核破坏肺实质和气道结构,损害肺脏功能,部分患者甚至进展为呼吸衰竭。临床类型以慢性呼吸衰竭为主,急性呼吸衰竭虽少见但大多后果严重。现笔者就肺结核导致呼吸衰竭的研究进展进行综述,重点聚焦于结核感染导致急慢性呼吸衰竭的病理生理变化、呼吸衰竭严重程度的评估,以及个体化呼吸支持技术的实施,为降低病亡率、改善预后并减少医源性肺损伤提供借鉴。
中图分类号:
张晓林, 李锋. 肺结核致呼吸衰竭研究进展[J]. 结核与肺部疾病杂志, 2022, 3(4): 320-324. doi: 10.19983/j.issn.2096-8493.20220014
Zhang Xiaolin, Li Feng. Research progress of respiratory failure caused by pulmonary tuberculosis[J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 320-324. doi: 10.19983/j.issn.2096-8493.20220014
[1] |
Ravimohan S, Kornfeld H, Weissman D, et al. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev, 2018, 27(147): 170077. doi: 10.1183/16000617.0077-2017.
doi: 10.1183/16000617.0077-2017 URL |
[2] |
Liu Q, Gao J, Luo B, et al. Prediction model for death in patients with pulmonary tuberculosis accompanied by respiratory failure in ICU: retrospective study. Ann Palliat Med, 2020, 9(5): 2731-2740. doi: 10.21037/apm-20-182.
doi: 10.21037/apm-20-182 URL |
[3] |
Kang NM, Zhang N, Luo BJ, et al. Sequential non-invasive following short-term invasive mechanical ventilation in the treatment of tuberculosis with respiratory failure: a randomized controlled study. BMC Pulm Med, 2021, 21(1): 203. doi: 10.1186/s12890-021-01563-x.
doi: 10.1186/s12890-021-01563-x URL |
[4] |
Kim S, Kim H, Kim WJ, et al. Mortality and predictors in pulmonary tuberculosis with respiratory failure requiring mechanical ventilation. Int J Tuberc Lung Dis, 2016, 20(4): 524-529. doi: 10.5588/ijtld.15.0690.
doi: 10.5588/ijtld.15.0690 pmid: 26970163 |
[5] |
Rhee CK, Yoo KH, Lee JH, et al. Clinical characteristics of patients with tuberculosis-destroyed lung. Int J Tuberc Lung Dis, 2013, 17(1): 67-75. doi: 10.5588/ijtld.12.0351.
doi: 10.5588/ijtld.12.0351 pmid: 23232006 |
[6] |
Yang B, Choi H, Shin SH, et al. Association of Ventilatory Disorders with Respiratory Symptoms, Physical Activity, and Quality of Life in Subjects with Prior Tuberculosis: A National Database Study in Korea. J Pers Med, 2021, 11(7):678. doi: 10.3390/jpm11070678.
doi: 10.3390/jpm11070678 URL |
[7] |
Amaral AFS, Coton S, Kato B, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J, 2015, 46(4): 1104-1112. doi: 10.1183/13993003.02325-2014.
doi: 10.1183/13993003.02325-2014 pmid: 26113680 |
[8] |
Lee PL, Jerng JS, Chang YL, et al. Patient mortality of active pulmonary tuberculosis requiring mechanical ventilation. Eur Respir J, 2003, 22(1): 141-147. doi: 10.1183/09031936.03.00038703.
doi: 10.1183/09031936.03.00038703 pmid: 12882464 |
[9] |
Shah M, Reed C. Complications of tuberculosis. Curr Opin Infect Dis, 2014, 27(5): 403-410. doi: 10.1097/QCO.0000000000000090.
doi: 10.1097/QCO.0000000000000090 URL |
[10] |
Kim YJ, Pack KM, Jeong E, et al. Pulmonary tuberculosis with acute respiratory failure. Eur Respir J, 2008, 32(6): 1625-1630. doi: 10.1183/09031936.00070907.
doi: 10.1183/09031936.00070907 pmid: 18614559 |
[11] |
Madansein R, Parida S, Padayatchi N, et al. Surgical treatment of complications of pulmonary tuberculosis, including drug-resistant tuberculosis. Int J Infect Dis, 2015, 32: 61-67. doi: 10.1016/j.ijid.2015.01.019.
doi: 10.1016/j.ijid.2015.01.019 pmid: 25809758 |
[12] |
Burke RM, Gupta Wright A. Diagnosing Tuberculosis in People With Advanced Human Immunodeficiency Virus: More Is Needed. Clin Infect Dis, 2021, 73(4): e878-e879. doi: 10.1093/cid/ciab184.
doi: 10.1093/cid/ciab184 |
[13] |
Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb), 2011, 91(6): 497-509. doi: 10.1016/j.tube.2011.03.007.
doi: 10.1016/j.tube.2011.03.007 URL |
[14] |
Russell DG, Cardona PJ, Kim MJ, et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol, 2009, 10(9): 943-948. doi: 10.1038/ni.1781.
doi: 10.1038/ni.1781 pmid: 19692995 |
[15] |
Guirado E, Schlesinger LS, Kaplan G. Macrophages in tuberculosis: friend or foe. Semin Immunopathol, 2013, 35(5): 563-583. doi: 10.1007/s00281-013-0388-2.
doi: 10.1007/s00281-013-0388-2 pmid: 23864058 |
[16] |
Blomgran R, Ernst JD. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol, 2011, 186(12): 7110-7119. doi: 10.4049/jimmunol.1100001.
doi: 10.4049/jimmunol.1100001 pmid: 21555529 |
[17] |
Pichugin AV, Yan BS, Sloutsky A, et al. Dominant role of the sst 1 locus in pathogenesis of necrotizing lung granulomas during chronic tuberculosis infection and reactivation in genetically resistant hosts. Am J Pathol, 2009, 174(6): 2190-2201. doi: 10.2353/ajpath.2009.081075.
doi: 10.2353/ajpath.2009.081075 URL |
[18] |
Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb), 2009, 89(1): 29-37. doi: 10.1016/j.tube.2008.09.009.
doi: 10.1016/j.tube.2008.09.009 URL |
[19] |
Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol, 2012, 189(6): 2689-2695. doi: 10.4049/jimmunol.1201719.
doi: 10.4049/jimmunol.1201719 URL |
[20] |
Guyot N, Wartelle J, Malleret L, et al. Unopposed cathepsin G, neutrophil elastase, and proteinase 3 cause severe lung damage and emphysema. Am J Pathol, 2014, 184(8): 2197-2210. doi: 10.1016/j.ajpath.2014.04.015.
doi: 10.1016/j.ajpath.2014.04.015 URL |
[21] |
Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev, 2011, 24(2): 351-376. doi: 10.1128/CMR.00042-10.
doi: 10.1128/CMR.00042-10 URL |
[22] |
Grosset J. Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. Antimicrob Agents Chemother, 2003, 47(3): 833-836. doi: 10.1128/AAC.47.3.833-836.2003.
doi: 10.1128/AAC.47.3.833-836.2003 URL |
[23] |
Barry CE, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009, 7(12): 845-855. doi: 10.1038/nrmicro2236.
doi: 10.1038/nrmicro2236 URL |
[24] |
Ketata W, Rekik WK, Ayadi H, et al. Extrapulmonary tuberculosis. Rev Pneumol Clin, 2015, 71(2/3): 83-92. doi: 10.1016/j.pneumo.2014.04.001.
doi: 10.1016/j.pneumo.2014.04.001 URL |
[25] |
Imazu P, Santos JM, Beraldi-Magalhães F, et al. Efficacy and safety of daily treatments for drug-susceptible pulmonary tuberculosis: a systematic review and network meta-analysis. J Pharm Pharmacol, 2022: rgac004. doi: 10.1093/jpp/rgac004.
doi: 10.1093/jpp/rgac004 |
[26] |
Lewinsohn DM, Leonard MK, LoBue PA, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis, 2017, 64(2):111-115.. doi: 10.1093/cid/ciw694.
doi: 10.1093/cid/ciw778 pmid: 28052967 |
[27] |
Ahmed MIM, Ntinginya NE, Kibiki G, et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific CD 4 T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front Immunol, 2018, 9: 2247. doi: 10.3389/fimmu.2018.02247.
doi: 10.3389/fimmu.2018.02247 URL |
[28] |
Smith C, Halse TA, Shea J, et al. Assessing Nanopore Sequencing for Clinical Diagnostics: a Comparison of Next-Generation Sequencing (NGS) Methods for Mycobacterium tuberculosis. J Clin Microbiol, 2020, 59(1):e00583-20.. doi: 10.1128/JCM.00583-20.
doi: 10.1128/JCM.00583-20 |
[29] |
Mondoni M, Repossi A, Carlucci P, et al. Bronchoscopic techniques in the management of patients with tuberculosis. Int J Infect Dis, 2017, 64: 27-37. doi: 10.1016/j.ijid.2017.08.008.
doi: 10.1016/j.ijid.2017.08.008 URL |
[30] |
Metlay JP, Waterer GW, Long AC, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med, 2019, 200(7):e45-e67. doi: 10.1164/rccm.201908-1581ST.
doi: 10.1164/rccm.201908-1581ST |
[31] |
Lange C, Dheda K, Chesov D, et al. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202): 953-966. doi: 10.1016/S0140-6736(19)31882-3.
doi: 10.1016/S0140-6736(19)31882-3 URL |
[32] |
Ejigu DA, Abay SM. N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberc Res Treat, 2020, 2020: 5907839. doi: 10.1155/2020/5907839.
doi: 10.1155/2020/5907839 |
[33] |
Brode SK, Campitelli MA, Kwong JC, et al.The risk of mycobacterial infections associated with inhaled corticosteroid use. Eur Respir J, 2017, 50(3):1700. doi: 10.1183/13993003.00037-2017.
doi: 10.1183/13993003.00037-2017 |
[34] |
Choi R, Jeong BH, Koh WJ, et al. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med, 2017, 37(2): 97-107. doi: 10.3343/alm.2017.37.2.97.
doi: 10.3343/alm.2017.37.2.97 URL |
[35] |
Fuentes Padilla P, Martinez G, Vernooij RW, et al. Early enteral nutrition (within 48 hours) versus delayed enteral nutrition (after 48 hours) with or without supplemental parenteral nutrition in critically ill adults. Cochrane Database Syst Rev, 2019, 2019(10):CD012340. doi: 10.1002/14651858.CD012340.
doi: 10.1002/14651858.CD012340 |
[36] |
Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition-An ESPEN Consensus Statement. Clin Nutr, 2015, 34(3): 335-340. doi: 10.1016/j.clnu.2015.03.001.
doi: 10.1016/j.clnu.2015.03.001 pmid: 25799486 |
[37] |
España PP, Capelastegui A, Gorordo I, et al. Development and Validation of a Clinical Prediction Rule for Severe Community-acquired Pneumonia. Am J Respir Crit Care Med, 2006, 174(11): 1249-1256. doi: 10.1164/rccm.200602-177OC.
doi: 10.1164/rccm.200602-177OC URL |
[38] |
ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23):2526-2533. doi: 10.1001/jama.2012.5669.
doi: 10.1001/jama.2012.5669 pmid: 22797452 |
[39] |
Grieco DL, Maggiore SM, Roca O, et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med, 2021, 47(8): 851-866. doi: 10.1007/s00134-021-06459-2.
doi: 10.1007/s00134-021-06459-2 URL |
[40] |
Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med, 2015, 372(23): 2185-2196. doi: 10.1056/NEJMoa1503326.
doi: 10.1056/NEJMoa1503326 URL |
[41] |
Spinelli E, Mauri T, Beitler JR, et al. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med, 2020, 46(4): 606-618. doi: 10.1007/s00134-020-05942-6.
doi: 10.1007/s00134-020-05942-6 pmid: 32016537 |
[42] |
Roca O, Caralt B, Messika J, et al. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am J Respir Crit Care Med, 2019, 199(11): 1368-1376. doi: 10.1164/rccm.201803-0589OC.
doi: 10.1164/rccm.201803-0589OC URL |
[43] |
Grieco DL, Menga LS, Eleuteri D, et al. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol, 2019, 85(9): 1014-1023. doi: 10.23736/S0375-9393.19.13418-9.
doi: 10.23736/S0375-9393.19.13418-9 |
[44] |
Papazian L, Aubron C, Brochard L, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care, 2019, 9(1): 69. doi: 10.1186/s13613-019-0540-9.
doi: 10.1186/s13613-019-0540-9 pmid: 31197492 |
[45] |
Chiumello D, Brioni M. Severe hypoxemia: which strategy to choose. Crit Care, 2016, 20(1): 132. doi: 10.1186/s13054-016-1304-7.
doi: 10.1186/s13054-016-1304-7 URL |
[46] |
Tonna JE, Abrams D, Brodie D, et al.Management of Adult Patients Supported with Venovenous Extracorporeal Membrane Oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J, 2021, 67(6): 601-610. doi: 10.1097/MAT.0000000000001432.
doi: 10.1097/MAT.0000000000001432 URL |
[47] |
Six S, Jaffal K, Ledoux G, et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Crit Care, 2016, 20(1): 195. doi: 10.1186/s13054-016-1368-4.
doi: 10.1186/s13054-016-1368-4 URL |
[48] |
Madotto F, Rezoagli E, Pham T, et al. Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study. Crit Care, 2020, 24(1): 125. doi: 10.1186/s13054-020-2826-6.
doi: 10.1186/s13054-020-2826-6 URL |
[49] |
Schjørring OL, Klitgaard TL, Perner A, et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med, 2021, 384(14): 1301-1311. doi: 10.1056/NEJMoa2032510.
doi: 10.1056/NEJMoa2032510 URL |
[50] |
Barrot L, Asfar P, Mauny F, et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med, 2020, 382(11):999-1008. doi: 10.1056/NEJMoa1916431.
doi: 10.1056/NEJMoa1916431 URL |
[51] |
Boyle AJ, Holmes DN, Hackett J, et al. Hyperoxaemia and hypoxaemia are associated with harm in patients with ARDS. BMC Pulm Med, 2021, 21(1): 285. doi: 10.1186/s12890-021-01648-7.
doi: 10.1186/s12890-021-01648-7 URL |
[52] |
Combes A, Hajage D, Capellier G, et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med, 2018, 378(21): 1965-1975. doi: 10.1056/NEJMoa1800385.
doi: 10.1056/NEJMoa1800385 URL |
[53] |
Oehlers SH. Revisiting hypoxia therapies for tuberculosisClin Sci (Lond) 2019, 133(12): 1271-1280. doi: 10.1042/CS20190415.
doi: 10.1042/CS20190415 pmid: 31209098 |
[1] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[2] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[3] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[4] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
[5] | 何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. |
[6] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[7] | 屈春瑾, 彭佳怡, 刘鈊逸, 肖冠琛, 顾芬, 李楠楠. 慢性阻塞性肺疾病患者延续性护理研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 254-259. |
[8] | 闫彦峰, 漆文霞, 崔永慧, 魏彩虹. 长链非编码RNA在慢性阻塞性肺疾病中的表达及其作用研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 172-178. |
[9] | 朋毛措, 谢俊刚. 免疫细胞在慢性阻塞性肺疾病并发心血管疾病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 179-185. |
[10] | 曹红, 钱冰, 吴金菊. 学校结核病疫情现状及防控工作研究进展[J]. 结核与肺部疾病杂志, 2024, 5(1): 88-92. |
[11] | 戴中上, 钟严俊, 陈燕. 慢性阻塞性肺疾病合并支气管扩张症的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 499-505. |
[12] | 郭晶, 娄南南, 李佳琳, 张华, 马香. 胸闷变异性哮喘与典型哮喘的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 413-418. |
[13] | 阮淑金, 曾坚, 陈敬芳, 王秀芬, 刘琳琳, 姜游力, 李孟君. 结核病治疗依从性状况、影响因素及干预措施研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 419-424. |
[14] | 冯怡, 常青, 李锋. 肺气肿肺纤维化综合征研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 425-431. |
[15] | 袁丽荣, 李淑花, 崔晓红, 裴俊丽, 弓巧巧. 护理突发公共卫生事件应急培训研究进展[J]. 结核与肺部疾病杂志, 2023, 4(3): 235-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||