结核与肺部疾病杂志 ›› 2021, Vol. 2 ›› Issue (3): 277-282.doi: 10.3969/j.issn.2096-8493.20210069
收稿日期:
2021-07-17
出版日期:
2021-09-30
发布日期:
2021-09-24
通信作者:
仵倩红
E-mail:Wuqianhong99@126.com
基金资助:
LI Jing, ZHANG Yan, WU Qian-hong()
Received:
2021-07-17
Online:
2021-09-30
Published:
2021-09-24
Contact:
WU Qian-hong
E-mail:Wuqianhong99@126.com
摘要:
结核病是结核分枝杆菌引起的慢性传染病,以肺结核最为常见。实验室检查主要以呼吸道样本(痰液、灌洗液)为检测对象,但对儿童结核病、肺外结核和并发HIV/AIDS患者的检测效果并不理想,故为提高这些人群的检测阳性率,以非痰液样本为基础的新的诊断方法也在不断研究中。游离DNA(cfDNA)是从原始细胞释放到各种体液中的DNA片段,对多种疾病的诊断具有广阔的应用前景。笔者针对血液或尿液等样本中结核分枝杆菌cfDNA的检测潜力,就其应用现状、提取前处理影响因素、提取方法和检测方法等方面的最新研究并结合经验进行论述。
李静, 张燕, 仵倩红. 非痰液样本结核分枝杆菌游离DNA检测在结核病诊断中的研究进展[J]. 结核与肺部疾病杂志, 2021, 2(3): 277-282. doi: 10.3969/j.issn.2096-8493.20210069
LI Jing, ZHANG Yan, WU Qian-hong. Research progress on free DNA detection of Mycobacterium tuberculosis of non-sputum samples in tuberculosis diagnosis[J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 277-282. doi: 10.3969/j.issn.2096-8493.20210069
[1] | World Health Organization. Global tuberculosis report 2020. Geneva:World Health Organization, 2020. |
[2] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med, 2015, 3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8.
doi: 10.1016/S2213-2600(15)00095-8 URL |
[3] |
Younis H, Kerschbaumer I, Moon JY, et al. Combining urine lipoarabinomannan with antibody detection as a simple non-sputum-based screening method for HIV-associated tuberculosis. PLoS One, 2019, 14(6):e0218606. doi: 10.1371/journal.pone.0218606.
doi: 10.1371/journal.pone.0218606 URL |
[4] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[5] |
Poeta P, Silva V, Guedes A, et al. Tuberculosis in the 21th century: Current status of diagnostic methods. Exp Lung Res, 2018, 44(7):352-360. doi: 10.1080/01902148.2018.1545880.
doi: 10.1080/01902148.2018.1545880 URL |
[6] |
Traver S, Assou S, Scalici E, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update, 2014, 20(6):905-923. doi: 10.1093/humupd/dmu031.
doi: 10.1093/humupd/dmu031 pmid: 24973359 |
[7] |
Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol, 2007, 122(2):125-134. doi: 10.1016/j.clim.2006.07.012.
doi: 10.1016/j.clim.2006.07.012 pmid: 17029966 |
[8] |
Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci, 2009, 46(1):1-24. doi: 10.1080/10408360802485875.
doi: 10.1080/10408360802485875 URL |
[9] |
Delgado PO, Alves BC, Gehrke Fde S, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol, 2013, 34(2):983-986. doi: 10.1007/s13277-012-0634-6.
doi: 10.1007/s13277-012-0634-6 URL |
[10] |
Aucamp J, Bronkhorst AJ, Badenhorst CPS, et al. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc, 2018, 93(3):1649-1683. doi: 10.1111/brv.12413.
doi: 10.1111/brv.12413 URL |
[11] |
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 2009, 7(2):99-109. doi: 10.1038/nrmicro2070.
doi: 10.1038/nrmicro2070 pmid: 19148178 |
[12] |
Fink SL, Cookson BT. Apoptosis pyroptosis and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 2005, 73(4):1907-1916. doi: 10.1128/IAI.73.4.1907-1916.2005.
doi: 10.1128/IAI.73.4.1907-1916.2005 URL |
[13] | Xue Y, Li H, Zhang Q, et al. Noninvasive Prenatal Screening for Fetal Sex Chromosome Aneuploidies at Two Next-Generation Sequencing Platforms. Ann Clin Lab Sci, 2018, 48(4):501-505. |
[14] |
Parsons HA, Beaver JA, Park BH. Circulating Plasma Tumor DNA. Adv Exp Med Biol, 2016, 882:259-276. doi: 10.1007/978-3-319-22909-6_11.
doi: 10.1007/978-3-319-22909-6_11 |
[15] |
Zhang Q, Hu G, Yang Q, et al. A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol Oncol, 2013, 130(1):132-139. doi: 10.1016/j.ygyno.2013.04.048.
doi: 10.1016/j.ygyno.2013.04.048 pmid: 23623832 |
[16] |
Kamat AA, Baldwin M, Urbauer D, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer, 2010, 116(8):1918-1925. doi: 10.1002/cncr.24997.
doi: 10.1002/cncr.24997 URL |
[17] |
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med, 2014, 6(224): 224ra24. doi: 10.1126/scitranslmed.3007094.
doi: 10.1126/scitranslmed.3007094 |
[18] |
Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol, 2017, 14(9):531-548. doi: 10.1038/nrclinonc.2017.14.
doi: 10.1038/nrclinonc.2017.14 pmid: 28252003 |
[19] |
Husain H, Melnikova VO, Kosco K, et al. Monitoring Daily Dynamics of Early Tumor Response to Targeted Therapy by Detecting Circulating Tumor DNA in Urine. Clin Cancer Res, 2017, 23(16):4716-4723. doi: 10.1158/1078-0432.CCR-17-0454.
doi: 10.1158/1078-0432.CCR-17-0454 pmid: 28420725 |
[20] |
Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutation and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med, 2015, 7(293): 293ra104. doi: 10.1126/scitranslmed.aaa8507.
doi: 10.1126/scitranslmed.aaa8507 |
[21] |
Miller AM, Shan RH, Pentsova EI, et al. Tracking tumor evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature, 2019, 565(7741):654-658. doi: 10.1038/s41586-019-0882-3.
doi: 10.1038/s41586-019-0882-3 URL |
[22] |
Kang Q, Henry NL, Paoletti C, et al. Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem, 2016, 49(18):1354-1360. doi: 10.1016/j.clinbiochem.2016.03.012.
doi: 10.1016/j.clinbiochem.2016.03.012 URL |
[23] |
Parpart-Li S, Bartlett B, Popoli M, et al. The Effect of Preservative and Temperature on the Analysis of Circulating Tumor DNA. Clin Cancer Res, 2017, 23(10):2471-2477. doi: 10.1158/1078-0432.CCR-16-1691.
doi: 10.1158/1078-0432.CCR-16-1691 pmid: 27827317 |
[24] |
Sherwood JL, Corcoran C, Brown H, et al. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC). PLoS One, 2016, 11(2):e0150197. doi: 10.1371/journal.pone.0150197.
doi: 10.1371/journal.pone.0150197 URL |
[25] |
Toro PV, Erlanger B, Beaver JA, et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem, 2015, 48(15):993-998. doi: 10.1016/j.clinbiochem.2015.07.097.
doi: 10.1016/j.clinbiochem.2015.07.097 URL |
[26] |
Medina Diaz I, Nocon A, Mehnert DH, et al. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One, 2016, 11(11):e0166354. doi: 10.1371/journal.pone.0166354.
doi: 10.1371/journal.pone.0166354 URL |
[27] |
Leng S, Zheng J, Jin Y, et al. Plasma cell-free DNA level and its integrity as biomarkers to distinguish non-small cell lung cancer from tuberculosis. Clin Chim Acta, 2018, 477:160-165. doi: 10.1016/j.cca.2017.11.003.
doi: 10.1016/j.cca.2017.11.003 URL |
[28] |
Murugesan K, Hogan CA, Palmer Z, et al. Investigation of Preanalytical Variables Impacting Pathogen Cell-Free DNA in Blood and Urine. J Clin Microbiol, 2019, 57(11):e00782-19. doi: 10.1128/JCM.00782-19.
doi: 10.1128/JCM.00782-19 |
[29] |
Burnham P, Kim MS, Agbor-Enoh S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci Rep, 2016, 6:27859. doi: 10.1038/srep27859.
doi: 10.1038/srep27859 pmid: 27297799 |
[30] |
Underhill HR, Kitzman JO, Hellwig S, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet, 2016, 12(7):e1006162. doi: 10.1371/journal.pgen.1006162.
doi: 10.1371/journal.pgen.1006162 URL |
[31] |
Yu SC, Lee SW, Jiang P, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem, 2013, 59(8):1228-1237. doi: 10.1373/clinchem.2013.203679.
doi: 10.1373/clinchem.2013.203679 URL |
[32] |
Yao W, Mei C, Nan X, et al. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene, 2016, 590(1):142-148. doi: 10.1016/j.gene.2016.06.033.
doi: 10.1016/j.gene.2016.06.033 URL |
[33] |
Tsui NB, Jiang P, Chow KC, et al. High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One, 2012, 7(10):e48319. doi: 10.1371/journal.pone.0048319.
doi: 10.1371/journal.pone.0048319 URL |
[34] |
Burnham P, Dadhania D, Heyang M, et al. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun, 2018, 9(1):2412. doi: 10.1038/s41467-018-04745-0.
doi: 10.1038/s41467-018-04745-0 pmid: 29925834 |
[35] |
Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: Pre- and post-analytical concerns. Chronic Dis Transl Med, 2016, 2(4):223-230. doi: 10.1016/j.cdtm.2016.12.001.
doi: 10.1016/j.cdtm.2016.12.001 |
[36] |
Franczak C, Filhine-Tresarrieu P, Gilson P, et al. Technical considerations for circulating tumor DNA detection in oncology. Expert Rev Mol Diagn, 2019, 19(2):121-135. doi: 10.1080/14737159.2019.1568873.
doi: 10.1080/14737159.2019.1568873 pmid: 30648442 |
[37] |
Mauger F, Dulary C, Daviaud C, et al. Comprehensive evalua-tion of methods to isolate, quantify, and characterize circula-ting cell-free DNA from small volumes of plasma. Anal Bioanal Chem, 2015, 407(22):6873-6878. doi: 10.1007/s00216-015-8846-4.
doi: 10.1007/s00216-015-8846-4 URL |
[38] |
潘杰, 吴玉梅, 黄学文, 等. 国产血浆游离DNA提取试剂盒的性能评价. 江苏大学学报(医学版), 2018, 28(2):163-168. doi: 10.13312/j.issn.1671-7783.y180003.
doi: 10.13312/j.issn.1671-7783.y180003 |
[39] |
Vogt SL, Patel M, Lakha A, et al. Feasibility of Cell-Free DNA Collection and Clonal Immunoglobulin Sequencing in South African Patients With HIV-Associated Lymphoma. JCO Glob Oncol, 2021, 7:611-621. doi: 10.1200/GO.20.00651.
doi: 10.1200/GO.20.00651 |
[40] |
Oreskovic A, Brault ND, Panpradist N, et al. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J Mol Diagn, 2019, 21(6):1067-1078. doi: 10.1016/j.jmoldx.2019.07.002.
doi: S1525-1578(19)30354-X pmid: 31442674 |
[41] |
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med, 2014, 20(5):548-554. doi: 10.1038/nm.3519.
doi: 10.1038/nm.3519 pmid: 24705333 |
[42] |
Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol, 2016, 34(5):547-555. doi: 10.1038/nbt.3520.
doi: 10.1038/nbt.3520 pmid: 27018799 |
[43] |
Phallen J, Sausen M, Adleff V, et al. Direct detection of early stage cancers using circulating tumor DNA. Sci Transl Med, 2017, 9(403): eaan2415. doi: 10.1126/scitranslmed.aan2415.
doi: 10.1126/scitranslmed.aan2415 |
[44] |
Paweletz CP, Sacher AG, Raymond CK, et al. Bias corrected targeted next generation sequencing for rapid, multiplexed detection of actionable alterations in cell free DNA from advanced lung cancer patients. Clin Cancer Res, 2016, 22(4):915-922. doi: 10.1158/1078-0432.CCR-15-1627-T.
doi: 10.1158/1078-0432.CCR-15-1627-T pmid: 26459174 |
[45] |
Click ES, Murithi W, Ouma GS, et al. Detection of Apparent Cell-free M.tuberculosis DNA from Plasma. Sci Rep, 2018, 8(1):645. doi: 10.1038/s41598-017-17683-6.
doi: 10.1038/s41598-017-17683-6 pmid: 29330384 |
[46] |
Yang X, Che N, Duan H, et al. Cell-free Mycobacterium tuberculosis DNA test in pleural effusion for tuberculous pleurisy: a diagnostic accuracy study. Clin Microbiol Infect, 2020, 26(8): 1089.e1-1089.e6. doi: 10.1016/j.cmi.2019.11.026.
doi: 10.1016/j.cmi.2019.11.026 |
[47] |
Yamamoto M, Ushio R, Watanabe H, et al. Detection of Mycobacterium tuberculosis-derived DNA in circulating cell-free DNA from a patient with disseminated infection using digital PCR. Int J Infect Dis, 2018, 66:80-82. doi: 10.1016/j.ijid.2017.11.01.
doi: S1201-9712(17)30300-4 pmid: 29154831 |
[48] |
Pan SW, Su WJ, Chan YJ, et al. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One, 2021, 16(6):e0253879. doi: 10.1371/journal.pone.0253879.
doi: 10.1371/journal.pone.0253879 URL |
[49] |
MacLean E, Nathavitharana RR. Progress toward Developing Sensitive Non-Sputum-Based Tuberculosis Diagnostic Tests: the Promise of Urine Cell-Free DNA. J Clin Microbiol, 2021, 59(8):e0070621. doi: 10.1128/JCM.00706-21.
doi: 10.1128/JCM.00706-21 |
[50] |
Che N, Yang X, Liu Z, et al. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion. J Clin Microbiol, 2017, 55(5):1526-1532. doi: 10.1128/JCM.02473-16.
doi: 10.1128/JCM.02473-16 URL |
[51] |
寿娟, 谢青梅, 易伟, 等. 胸水游离DNA的结核杆菌检测在结核病诊断中的价值. 中华病理学杂志, 2018, 47(6):465-467. doi: 10.3760/cma.j.issn.0529-5807.2018.06.016.
doi: 10.3760/cma.j.issn.0529-5807.2018.06.016 |
[52] |
Li X, Du W, Wang Y, et al. Rapid Diagnosis of Tuberculosis Meningitis by Detecting Mycobacterium tuberculosis Cell-Free DNA in Cerebrospinal Fluid. Am J Clin Pathol, 2020, 153(1):126-130. doi: 10.1093/ajcp/aqz135.
doi: 10.1093/ajcp/aqz135 URL |
[53] |
Sharma P, Anthwal D, Kumari P, et al. Utility of circulating cell-free Mycobacterium tuberculosis DNA for the improved diagnosis of abdominal tuberculosis. PLoS One, 2020, 15(8):e0238119. doi. org/10.1371/journal.pone.0238119.
doi: org/10.1371/journal.pone.0238119 URL |
[54] |
Yu G, Shen Y, Ye B, et al. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: A systematic review and meta-analysis. PLoS One, 2021, 16(6):e0253658. doi: 10.1371/journal.pone.0253658.
doi: 10.1371/journal.pone.0253658 URL |
[1] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[2] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[3] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[4] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
[5] | 何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. |
[6] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[7] | 屈春瑾, 彭佳怡, 刘鈊逸, 肖冠琛, 顾芬, 李楠楠. 慢性阻塞性肺疾病患者延续性护理研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 254-259. |
[8] | 闫彦峰, 漆文霞, 崔永慧, 魏彩虹. 长链非编码RNA在慢性阻塞性肺疾病中的表达及其作用研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 172-178. |
[9] | 朋毛措, 谢俊刚. 免疫细胞在慢性阻塞性肺疾病并发心血管疾病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 179-185. |
[10] | 曹红, 钱冰, 吴金菊. 学校结核病疫情现状及防控工作研究进展[J]. 结核与肺部疾病杂志, 2024, 5(1): 88-92. |
[11] | 戴中上, 钟严俊, 陈燕. 慢性阻塞性肺疾病合并支气管扩张症的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 499-505. |
[12] | 郭晶, 娄南南, 李佳琳, 张华, 马香. 胸闷变异性哮喘与典型哮喘的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 413-418. |
[13] | 阮淑金, 曾坚, 陈敬芳, 王秀芬, 刘琳琳, 姜游力, 李孟君. 结核病治疗依从性状况、影响因素及干预措施研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 419-424. |
[14] | 冯怡, 常青, 李锋. 肺气肿肺纤维化综合征研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 425-431. |
[15] | 袁丽荣, 李淑花, 崔晓红, 裴俊丽, 弓巧巧. 护理突发公共卫生事件应急培训研究进展[J]. 结核与肺部疾病杂志, 2023, 4(3): 235-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||