结核与肺部疾病杂志 ›› 2022, Vol. 3 ›› Issue (5): 410-414.doi: 10.19983/j.issn.2096-8493.20220105
收稿日期:
2022-06-21
出版日期:
2022-10-20
发布日期:
2022-10-14
通信作者:
许黎黎
E-mail:justinexull26@163.com
基金资助:
Received:
2022-06-21
Online:
2022-10-20
Published:
2022-10-14
Contact:
Xu Lili
E-mail:justinexull26@163.com
Supported by:
摘要:
呼吸道合胞病毒(respiratory syncytial virus, RSV)是导致儿童和老年人下呼吸道感染的常见病原体之一。目前还没有疫苗可预防RSV感染,预防性和治疗性的RSV特异性抗体,由于其昂贵的价格和不确定的临床价值,主要在高危人群中使用。受体是病毒感染细胞一个决定性因素,它参与了病毒的入胞、致病等过程。因此,识别与RSV相互作用的受体,并研究其在RSV感染过程中的作用,对于深入了解RSV的致病过程并寻找治疗靶点有着非常重要的意义。笔者主要对已知的RSV感染所需受体及其致病机制进行综述,为未来RSV致病机制研究及潜在药物靶点和疫苗开发提供相关的信息。
中图分类号:
冯梓恒, 许黎黎. 呼吸道合胞病毒感染相关受体的研究进展[J]. 结核与肺部疾病杂志, 2022, 3(5): 410-414. doi: 10.19983/j.issn.2096-8493.20220105
Feng Ziheng, Xu Lili. An update on researches of the receptors for respiratory syncytial virus infection[J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 410-414. doi: 10.19983/j.issn.2096-8493.20220105
[1] |
Scheltema NM, Gentile A, Lucion F, et al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob Health, 2017, 5(10):e984-e991. doi: 10.1016/S2214-109X(17)30344-3.
doi: 10.1016/S2214-109X(17)30344-3 |
[2] |
Geoghegan S, Erviti A, Caballero MT, et al. Mortality due to Respiratory Syncytial Virus. Burden and Risk Factors. Am J Respir Crit Care Med, 2017, 195(1): 96-103. doi: 10.1164/rccm.201603-0658OC.
doi: 10.1164/rccm.201603-0658OC URL |
[3] |
Mac S, Sumner A, Duchesne-Belanger S, et al. Cost-effectiveness of Palivizumab for Respiratory Syncytial Virus: A Systematic Review. Pediatrics, 2019, 143(5):e20184064. doi: 10.1542/peds.2018-4064.
doi: 10.1542/peds.2018-4064 |
[4] |
Battles MB, McLellan JS. Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol, 2019, 17(4): 233-245. doi: 10.1038/s41579-019-0149-x.
doi: 10.1038/s41579-019-0149-x pmid: 30723301 |
[5] |
Griffiths C, Drews SJ, Marchant DJ. Respiratory Syncytial Virus: Infection, Detection and New Options for Prevention and Treatment. Clin Microbiol Rev, 2017, 30(1):277-319. doi: 10.1128/CMR.00010-16.
doi: 10.1128/CMR.00010-16 pmid: 27903593 |
[6] |
Tripp RA, Jones LP, Haynes LM, et al. CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol, 2001, 2(8):732-738. doi: 10.1038/90675.
doi: 10.1038/90675 pmid: 11477410 |
[7] |
Tayyari F, Marchant D, Moraes TJ, et al. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med, 2011, 17(9):1132-1135. doi: 10.1038/nm.2444.
doi: 10.1038/nm.2444 pmid: 21841784 |
[8] |
Griffiths CD, Bilawchuk LM, McDonough JE, et al. IGF1R is an entry receptor for respiratory syncytial virus. Nature, 2020, 583(7817):615-619. doi: 10.1038/s41586-020-2369-7.
doi: 10.1038/s41586-020-2369-7 URL |
[9] |
Currier MG, Lee S, Stobart CC, et al. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathog, 2016, 12(5):e1005622. doi: 10.1371/journal.ppat.1005622.
doi: 10.1371/journal.ppat.1005622 |
[10] |
Feldman SA, Hendry RM, Beeler JA. Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J Virol, 1999, 73(8): 6610-6617. doi: 10.1128/JVI.73.8.6610-6617.1999.
doi: 10.1128/JVI.73.8.6610-6617 pmid: 10400758 |
[11] |
Behera AK, Matsuse H, Kumar M, et al. Blocking intercellular adhesion molecule-1 on human epithelial cells decreases respira-tory syncytial virus infection. Biochem Biophys Res Commun, 2001, 280(1):188-195. doi: 10.1006/bbrc.2000.4093.
doi: 10.1006/bbrc.2000.4093 URL |
[12] |
Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91(4): 521-530. doi: 10.1016/s0092-8674(00)80438-9.
doi: 10.1016/s0092-8674(00)80438-9 pmid: 9390561 |
[13] |
Kim KW, Vallon-Eberhard A, Zigmond E, et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 2011, 118(22): e156-167. doi: 10.1182/blood-2011-04-348946.
doi: 10.1182/blood-2011-04-348946 URL |
[14] |
Jeong KI, Piepenhagen PA, Kishko M, et al. CX3CR1 Is Expressed in Differentiated Human Ciliated Airway Cells and Co-Localizes with Respiratory Syncytial Virus on Cilia in a G Protein-Dependent Manner. PLoS One, 2015, 10(6):e0130517. doi: 10.1371/journal.pone.0130517.
doi: 10.1371/journal.pone.0130517 |
[15] |
Harcourt J, Alvarez R, Jones LP, et al. Respiratory syncytial virus G protein and G protein CX3C motif adversely affect CX3CR1+ T cell responses. J Immunol, 2006, 176(3):1600-1608. doi: 10.4049/jimmunol.176.3.1600.
doi: 10.4049/jimmunol.176.3.1600 URL |
[16] |
Lee M, Lee Y, Song J, et al. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw, 2018, 18(1):e5. doi: 10.4110/in.2018.18.e5.
doi: 10.4110/in.2018.18.e5 URL |
[17] |
Anderson CS, Chu CY, Wang Q, et al. CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung. Pediatr Res, 2020, 87(5):862-867. doi: 10.1038/s41390-019-0677-0.
doi: 10.1038/s41390-019-0677-0 pmid: 31726465 |
[18] |
Green G, Johnson SM, Costello H, et al. CX3CR1 Is a Receptor for Human Respiratory Syncytial Virus in Cotton Rats. J Virol, 2021, 95(16):e0001021. doi: 10.1128/JVI.00010-21.
doi: 10.1128/JVI.00010-21 |
[19] |
Anderson LJ, Bingham P, Hierholzer JC. Neutralization of respiratory syncytial virus by individual and mixtures of F and G protein monoclonal antibodies. J Virol, 1988, 62(11): 4232-4238. doi: 10.1128/JVI.62.11.4232-4238.1988.
doi: 10.1128/JVI.62.11.4232-4238.1988 pmid: 2459412 |
[20] |
Chirkova T, Lin S, Oomens AGP, et al. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol, 2015, 96(9):2543-2556. doi: 10.1099/vir.0.000218.
doi: 10.1099/vir.0.000218 pmid: 26297201 |
[21] |
Reed JL, Welliver TP, Sims GP, et al. Innate immune signals modulate antiviral and polyreactive antibody responses during severe respiratory syncytial virus infection. J Infect Dis, 2009, 199(8): 1128-1138. doi: 10.1086/597386.
doi: 10.1086/597386 pmid: 19278337 |
[22] |
Zhivaki D, Lemoine S, Lim A, et al. Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity, 2017, 46(2): 301-314. doi: 10.1016/j.immuni.2017.01.010.
doi: S1074-7613(17)30032-8 pmid: 28228284 |
[23] |
Chirkova T, Boyoglu-Barnum S, Gaston KA, et al. Respiratory syncytial virus G protein CX3C motif impairs human airway epithelial and immune cell responses. J Virol, 2013, 87(24):13466-13479. doi: 10.1128/JVI.01741-13.
doi: 10.1128/JVI.01741-13 pmid: 24089561 |
[24] |
Fraticelli P, Sironi M, Bianchi G, et al. Fractalkine(CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest, 2001, 107(9):1173-1181. doi: 10.1172/JCI11517.
doi: 10.1172/JCI11517 pmid: 11342581 |
[25] |
Amanatidou V, Sourvinos G, Apostolakis S, et al. T280M variation of the CX3C receptor gene is associated with increased risk for severe respiratory syncytial virus bronchiolitis. Pediatr Infect Dis J, 2006, 25(5): 410-414. doi: 10.1097/01.inf.0000214998.16248.b7.
doi: 10.1097/01.inf.0000214998.16248.b7 pmid: 16645504 |
[26] |
Anderson CS, Chirkova T, Slaunwhite CG, et al. CX3CR1 Engagement by Respiratory Syncytial Virus Leads to Induction of Nucleolin and Dysregulation of Cilia-related Genes. J Virol, 2021, 95(11):e00095-21. doi: 10.1128/JVI.00095-21.
doi: 10.1128/JVI.00095-21 |
[27] |
Caidi H, Miao C, Thornburg NJ, et al. Anti-respiratory syncytial virus (RSV) G monoclonal antibodies reduce lung inflammation and viral lung titers when delivered therapeutically in a BALB/c mouse model. Antiviral Res, 2018, 154:149-157. doi: 10.1016/j.antiviral.2018.04.014.
doi: 10.1016/j.antiviral.2018.04.014 URL |
[28] |
Jia W, Yao Z, Zhao J, et al. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci, 2017, 186:1-10. doi: 10.1016/j.lfs.2017.07.025.
doi: S0024-3205(17)30355-7 pmid: 28751161 |
[29] |
Ginisty H, Sicard H, Roger B, et al. Structure and functions of nucleolin. J Cell Sci, 1999, 112 (Pt 6):761-772. doi: 10.1242/jcs.112.6.761.
doi: 10.1242/jcs.112.6.761 URL |
[30] |
Koutsioumpa M, Papadimitriou E. Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov, 2014, 9(2):137-152. doi: 10.2174/1574892808666131119095953.
doi: 10.2174/1574892808666131119095953 pmid: 24251811 |
[31] |
Callé A, Ugrinova I, Epstein AL, et al. Nucleolin is required for an efficient herpes simplex virus type 1 infection. J Virol, 2008, 82(10): 4762-4773. doi: 10.1128/JVI.00077-08.
doi: 10.1128/JVI.00077-08 pmid: 18321972 |
[32] |
Oksayan S, Nikolic J, David CT, et al. Identification of a role for nucleolin in rabies virus infection. J Virol, 2015, 89(3): 1939-1943. doi: 10.1128/JVI.03320-14.
doi: 10.1128/JVI.03320-14 pmid: 25428867 |
[33] |
Kumar D, Broor S, Rajala MS. Interaction of Host Nucleolin with Influenza A Virus Nucleoprotein in the Early Phase of Infection Limits the Late Viral Gene Expression. PLoS One, 2016, 11(10):e0164146. doi: 10.1371/journal.pone.0164146.
doi: 10.1371/journal.pone.0164146 |
[34] |
Mastrangelo P, Chin AA, Tan S, et al. Identification of RSV Fusion Protein Interaction Domains on the Virus Receptor, Nucleolin. Viruses, 2021, 13(2):261. doi: 10.3390/v13020261.
doi: 10.3390/v13020261 URL |
[35] |
Hegele RG. Making sense of cell surface nucleolin: implications for respiratory syncytial virus prophylaxis and therapy. Cell Cycle, 2012, 11(1):1-2. doi: 10.4161/cc.11.1.18466.
doi: 10.4161/cc.11.1.18466 pmid: 22185777 |
[36] |
Forbes BE, Blyth AJ, Wit JM. Disorders of IGFs and IGF-1R signaling pathways. Mol Cell Endocrinol, 2020, 518:111035. doi: 10.1016/j.mce.2020.111035.
doi: 10.1016/j.mce.2020.111035 |
[37] |
Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A 431 epidermoid carcinoma cells. Nature, 1984, 309(5967): 418-425. doi: 10.1038/309418a0.
doi: 10.1038/309418a0 URL |
[38] |
Weerasekara VK, Patra KC, Bardeesy N. EGFR Pathway Links Amino Acid Levels and Induction of Macropinocytosis. Dev Cell, 2019, 50(3):261-263. doi: 10.1016/j.devcel.2019.07.020.
doi: S1534-5807(19)30626-4 pmid: 31386860 |
[39] |
Lee SW, Zhang Y, Jung M, et al. EGFR-Pak Signaling Selectively Regulates Glutamine Deprivation-Induced Macropinocytosis. Dev Cell, 2019, 50(3): 381-392. e5. doi: 10.1016/j.devcel.2019.05.043.
doi: 10.1016/j.devcel.2019.05.043 URL |
[40] |
Krzyzaniak MA, Zumstein MT, Gerez JA, et al. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog, 2013, 9(4): e1003309. doi: 10.1371/journal.ppat.1003309.
doi: 10.1371/journal.ppat.1003309 |
[41] |
Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011, 3(7):a004952. doi: 10.1101/cshperspect.a004952.
doi: 10.1101/cshperspect.a004952 |
[42] |
Flynn SJ, Ryan P. A heterologous heparin-binding domain can promote functional attachment of a pseudorabies virus gC mutant to cell surfaces. J Virol, 1995, 69(2): 834-839. doi: 10.1128/JVI.69.2.834-839.1995.
doi: 10.1128/JVI.69.2.834-839.1995 pmid: 7815550 |
[43] |
Mondor I, Ugolini S, Sattentau QJ. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol, 1998, 72(5): 3623-3634. doi: 10.1128/JVI.72.5.3623-3634.1998.
doi: 10.1128/JVI.72.5.3623-3634.1998 pmid: 9557643 |
[44] |
Jackson T, Ellard FM, Ghazaleh RA, et al. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J Virol, 1996, 70(8): 5282-5287. doi: 10.1128/JVI.70.8.5282-5287.1996.
doi: 10.1128/JVI.70.8.5282-5287.1996 pmid: 8764038 |
[45] |
Hallak LK, Spillmann D, Collins PL, et al. Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol, 2000, 74(22):10508-10513. doi: 10.1128/jvi.74.22.10508-10513.2000.
doi: 10.1128/jvi.74.22.10508-10513.2000 pmid: 11044095 |
[46] |
Bourgeois C, Bour JB, Lidholt K, et al. Heparin-like structures on respiratory syncytial virus are involved in its infectivity in vitro. J Virol, 1998, 72(9): 7221-7227. doi: 10.1128/JVI.72.9.7221-7227.1998.
doi: 10.1128/JVI.72.9.7221-7227.1998 pmid: 9696816 |
[47] |
Krusat T, Streckert HJ. Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch Virol, 1997, 142(6):1247-1254. doi: 10.1007/s007050050156.
doi: 10.1007/s007050050156 pmid: 9229012 |
[48] |
Feldman SA, Audet S, Beeler JA. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol, 2000, 74(14): 6442-6447. doi: 10.1128/jvi.74.14.6442-6447.2000.
doi: 10.1128/jvi.74.14.6442-6447.2000 pmid: 10864656 |
[49] |
Staunton DE, Dustin ML, Erickson HP, et al. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell, 1990, 61(2): 243-254. doi: 10.1016/0092-8674(90)90805-o.
doi: 10.1016/0092-8674(90)90805-o pmid: 1970514 |
[50] |
Staunton DE, Marlin SD, Stratowa C, et al. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell, 1988, 52(6): 925-933. doi: 10.1016/0092-8674(88)90434-5.
doi: 10.1016/0092-8674(88)90434-5 pmid: 3349522 |
[51] |
Yu X, Shang H, Jiang Y. ICAM-1 in HIV infection and underlying mechanisms. Cytokine, 2020, 125: 154830. doi: 10.1016/j.cyto.2019.154830.
doi: 10.1016/j.cyto.2019.154830 |
[52] |
Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med, 2000, 28(9):1379-1386. doi: 10.1016/s0891-5849(00)00223-9.
doi: 10.1016/s0891-5849(00)00223-9 URL |
[53] |
Bella J, Kolatkar PR, Marlor CW, et al. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci U S A, 1998, 95(8):4140-4145. doi: 10.1073/pnas.95.8.4140.
doi: 10.1073/pnas.95.8.4140 pmid: 9539703 |
[54] |
Teijeira A, Hunter MC, Russo E, et al. T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions. Cell Rep, 2017, 18(4):857-865. doi: 10.1016/j.celrep.2016.12.078.
doi: S2211-1247(16)31800-9 pmid: 28122237 |
[55] |
Wee H, Oh HM, Jo JH, et al. ICAM-1/LFA-1 interaction contributes to the induction of endothelial cell-cell separation: implication for enhanced leukocyte diapedesis. Exp Mol Med, 2009, 41(5): 341-348. doi: 10.3858/emm.2009.41.5.038.
doi: 10.3858/emm.2009.41.5.038 pmid: 19307754 |
[56] |
Basnet S, Palmenberg AC, Gern JE. Rhinoviruses and Their Receptors. Chest, 2019, 155(5):1018-1025. doi: 10.1016/j.chest.2018.12.012.
doi: S0012-3692(19)30003-0 pmid: 30659817 |
[57] |
Arnold R, Konig W. RICAM-1 expression and low-molecular-weight G-protein activation of human bronchial epithelial cells (A549) infected with RSVR. J Leukoc Biol, 1996, 60(6): 766-771. doi: 10.1002/jlb.60.6.766.
doi: 10.1002/jlb.60.6.766 URL |
[58] |
Wang SZ, Hallsworth PG, Dowling KD, et al. Adhesion molecule expression on epithelial cells infected with respiratory syncytial virus. Eur Respir J, 2000, 15(2):358-366. doi: 10.1034/j.1399-3003.2000.15b23.x.
doi: 10.1034/j.1399-3003.2000.15b23.x pmid: 10706505 |
[59] |
Patel JA, Kunimoto M, Sim TC, et al. Interleukin-1 alpha mediates the enhanced expression of intercellular adhesion molecule-1 in pulmonary epithelial cells infected with respiratory syncytial virus. Am J Respir Cell Mol Biol, 1995, 13(5):602-609. doi: 10.1165/ajrcmb.13.5.7576697.
doi: 10.1165/ajrcmb.13.5.7576697 URL |
[60] |
Chini BA, Fiedler MA, Milligan L, et al. Essential roles of NF-kappaB and C/EBP in the regulation of intercellular adhesion molecule-1 after respiratory syncytial virus infection of human respiratory epithelial cell cultures. J Virol, 1998, 72(2): 1623-1626. doi: 10.1128/JVI.72.2.1623-1626.1998.
doi: 10.1128/JVI.72.2.1623-1626.1998 pmid: 9445067 |
[61] | Stark JM, Godding V, Sedgwick JB, et al. Respiratory syncytial virus infection enhances neutrophil and eosinophil adhesion to cultured respiratory epithelial cells. Roles of CD18 and intercellular adhesion molecule-1. J Immunol, 1996, 156(12): 4774-4782. |
[1] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[2] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[3] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[4] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
[5] | 何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. |
[6] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[7] | 屈春瑾, 彭佳怡, 刘鈊逸, 肖冠琛, 顾芬, 李楠楠. 慢性阻塞性肺疾病患者延续性护理研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 254-259. |
[8] | 闫彦峰, 漆文霞, 崔永慧, 魏彩虹. 长链非编码RNA在慢性阻塞性肺疾病中的表达及其作用研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 172-178. |
[9] | 朋毛措, 谢俊刚. 免疫细胞在慢性阻塞性肺疾病并发心血管疾病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 179-185. |
[10] | 曹红, 钱冰, 吴金菊. 学校结核病疫情现状及防控工作研究进展[J]. 结核与肺部疾病杂志, 2024, 5(1): 88-92. |
[11] | 戴中上, 钟严俊, 陈燕. 慢性阻塞性肺疾病合并支气管扩张症的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 499-505. |
[12] | 郭晶, 娄南南, 李佳琳, 张华, 马香. 胸闷变异性哮喘与典型哮喘的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 413-418. |
[13] | 阮淑金, 曾坚, 陈敬芳, 王秀芬, 刘琳琳, 姜游力, 李孟君. 结核病治疗依从性状况、影响因素及干预措施研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 419-424. |
[14] | 冯怡, 常青, 李锋. 肺气肿肺纤维化综合征研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 425-431. |
[15] | 袁丽荣, 李淑花, 崔晓红, 裴俊丽, 弓巧巧. 护理突发公共卫生事件应急培训研究进展[J]. 结核与肺部疾病杂志, 2023, 4(3): 235-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||