Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (6): 511-518.doi: 10.19983/j.issn.2096-8493.20230108
• Review Articles • Previous Articles Next Articles
Received:
2023-09-05
Online:
2023-12-20
Published:
2023-12-18
Contact:
Xie Jianping, Email: Supported by:
CLC Number:
Yan Yaru, Xie Jianping. Research progress on the role of interleukin-1 in immune response and metabolic reprogramming of macrophages against Mycobacterium tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(6): 511-518. doi: 10.19983/j.issn.2096-8493.20230108
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20230108
名称 | 主要来源 | 受体(别称) | 共受体(别称) | 活性形式 | 功能 | 文献参考 |
---|---|---|---|---|---|---|
IL-1α | 角质形成细胞、内皮细胞、上皮细胞、单核细胞、巨噬细胞、树突状细胞、B淋巴细胞 | IL-1R1(IL-1RⅠ、CD121a) | IL-1R3(IL-1RAcP) | 全长、裂解后 | 促炎性细胞因子、Th17型细胞应答 | [ |
IL-1β | 单核细胞、巨噬细胞、树突状细胞、B细胞、NK细胞 | IL-1R1 | IL-1R3 | 裂解后 | 促炎性细胞因子、Th17型细胞应答抗细菌感染 | [ |
IL-1Ra | 单核细胞、巨噬细胞、树突状细胞、中性粒细胞上皮细胞 | IL-1R1 | - | - | 抗炎性细胞因子 | [ |
IL-18 | 巨噬细胞、树突状细胞、中性粒细胞上皮细胞 | IL-1R5(IL-18Rα、IL-1Rrp、IL-1Rrp1、CD218a) | IL-1R7(IL-18Rβ、IL-18RAcP、CD218b) | 裂解后 | 促炎性细胞因子、Th1型细胞应答 | [ |
IL-33 | 内皮细胞、上皮细胞、成纤维样细胞 | IL-1R4(IL-33R、ST2) | IL-1R3 | 全长、裂解后 | 促炎性细胞因子、Th2型细胞应答 | [ |
IL-36 (α/β/γ) | 皮肤、肠道等组织中的上皮细胞,在单核细胞中被强烈诱导角质形成细胞 | IL-1R6(IL-1Rrp2、IL-1RL2、IL-36R) | IL-1R3 | 裂解后 | 促炎性细胞因子 | [ |
IL-36Ra | 人血单核细胞、组织巨噬细胞、滑膜细胞、扁桃体B细胞、浆细胞、T细胞、肿瘤细胞以及皮肤、肾脏和肠道的上皮细胞B细胞、上皮细胞 | IL-1R6 | - | 裂解后 | 抗炎性细胞因子 | [ |
IL-37 | IL-1R5 | IL-1R8(SIGGIR、TIR8)、IL-1R1 | 全长、裂解后 | 抗炎性细胞因子 | [ | |
IL-38 | IL-1R6 | IL-1R9(IL-1RAPL1、TIGIRR-2)、IL-1R1 | - | 抗炎性细胞因子 | [ |
[1] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] |
Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol, 2012, 12(8):581-591. doi:10.1038/nri3259.
pmid: 22790178 |
[3] |
Cohen SB, Gern BH, Delahaye JL, et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe, 2018, 24(3):439-446. doi:10.1016/j.chom.2018.08.001.
pmid: 30146391 |
[4] | Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446):445-455. doi:10.1038/nature12034. |
[5] |
Haldar M, Murphy KM. Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev, 2014, 262(1):25-35. doi:10.1111/imr.12215.
pmid: 25319325 |
[6] |
Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41(1):14-20. doi:10.1016/j.immuni.2014.06.008.
pmid: 25035950 |
[7] | Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci, 2008, 13:453-461. doi:10.2741/2692. |
[8] |
Xue J, Schmidt SV, Sander J, et al. Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation. Immunity, 2014, 40(2):274-288. doi:10.1016/j.immuni.2014.01.006.
pmid: 24530056 |
[9] | Shi LB, Jiang QK, Bushkin Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. Mbio, 2019, 10(2):e02550-18. doi:10.1128/mBio.02550-18. |
[10] | O’neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med, 2016, 213(1):15-23. doi:10.1084/jem.20151570. |
[11] |
Lachmandas E, Rios-Miguel AB, Koeken V, et al. Tissue Metabolic Changes Drive Cytokine Responses to Mycobacterium tuberculosis. J Infect Dis, 2018, 218(1):165-170. doi:10.1093/infdis/jiy173.
pmid: 29618104 |
[12] |
Netea MG, van de Veerdonk FL, van der Meer JWM, et al. Inflammasome-Independent Regulation of IL-1-Family Cytokines. Annu Rev Immunol, 2015, 33:49-77. doi:10.1146/annurev-immunol-032414-112306.
pmid: 25493334 |
[13] | Yuan XL, Peng X, Li Y, et al. Role of IL-38 and Its Related Cytokines in Inflammation. Mediators Inflamm, 2015, 2015:807976. doi:10.1155/2015/807976. |
[14] | Palomo J, Dietrich D, Martin P, et al. The interleukin (IL)-1 cytokine family-Balance between agonists and antagonists in inflammatory diseases. Cytokine, 2015, 76(1):25-37. doi:10.1016/j.cyto.2015.06.017. |
[15] |
Zhu Q, Kanneganti TD. Cutting Edge: Distinct Regulatory Mechanisms Control Proinflammatory Cytokines IL-18 and IL-1β. J Immunol, 2017, 198(11):4210-4215. doi:10.4049/jimmunol.1700352.
pmid: 28468974 |
[16] | Gracie JA, Robertson SE, Mcinnes IB. Interleukin-18. J Leukoc Biol, 2003, 73(2):213-224. doi:10.1189/jlb.0602313. |
[17] | Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A., 2009, 106(22):9021-9026. doi:10.1073/pnas.0812690106. |
[18] |
Gresnigt MS, Van De Veerdonk FL. Biology of IL-36 cytokines and their role in disease. Semin Immunol, 2013, 25(6):458-465. doi:10.1016/j.smim.2013.11.003.
pmid: 24355486 |
[19] |
Conti P, Carinci F, Lessiani G, et al. Potential therapeutic use of IL-37: a key suppressor of innate immunity and allergic immune responses mediated by mast cells. Immunol Res, 2017, 65(5):982-986. doi:10.1007/s12026-017-8938-7.
pmid: 28748328 |
[20] | Silverio D, Goncalves R, Appelberg R, et al. Advances on the Role and Applications of Interleukin-1 in Tuberculosis. Mbio, 2021, 12(6):e0313421. doi:10.1128/mBio.03134-21. |
[21] |
Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol, 2011, 4(3):252-260. doi:10.1038/mi.2011.13.
pmid: 21430655 |
[22] |
Ravesloot-Chávez MM, Dis EV, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol, 2021, 39:611-637. doi:10.1146/annurev-immunol-093019-010426.
pmid: 33637017 |
[23] |
Mayer-Barber KD, Barber DL, Shenderov K, et al. Caspase-1 independent IL-1β production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol, 2010, 184(7):3326-30. doi:10.4049/jimmunol.0904189.
pmid: 20200276 |
[24] | Abdalla H, Srinivasan L, Shah S, et al. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1β and IL-18 secretion but not to pyroptosis. PLoS One, 2012, 7(7):e40722. doi:10.1371/journal.pone.0040722. |
[25] | Krishnan N, Robertson BD, Thwaites G. Pathways of IL-1β secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis (Edinb), 2013, 93(5):538-547. doi:10.1016/j.tube.2013.05.002. |
[26] |
Gringhuis SI, Kaptein TM, Wevers BA, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol, 2012, 13(3):246-254. doi:10.1038/ni.2222.
pmid: 22267217 |
[27] |
Rivers-Auty J, Daniels MJD, Colliver I, et al. Redefining the ancestral origins of the interleukin-1 superfamily. Nat Commun, 2018, 9 (1):1156. doi:10.1038/s41467-018-03362-1.
pmid: 29559685 |
[28] |
Priestle JP, Schar HP, Grutter MG. Crystal-Structure of the Cytokine Interleukin-1-β. Embo J, 1988, 7(2):339-343. doi:10.1002/j.1460-2075.1988.tb02818.x.
pmid: 3259176 |
[29] | Ren XM, Gelinas AD, Von Carlowitz I, et al. Structural basis for IL-1 alpha recognition by a modified DNA aptamer that specifically inhibits IL-1 alpha signaling. Nat Commun, 2017, 8(1):810. doi:10.1038/s41467-017-00864-2. |
[30] |
Mosley B, Urdal DL, Prickett KS, et al. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem, 1987, 262(7):2941-2944. doi:https://doi.org/10.1016/S0021-9258(18)61450-4.
pmid: 2950091 |
[31] |
Cohen I, Rider P, Vornov E, et al. IL-1 α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep, 2015, 5:14756. doi:10.1038/srep14756.
pmid: 26439902 |
[32] | Chiu JW, Binte Hanafi Z, Chew LCY, et al. IL-1α Processing, Signaling and Its Role in Cancer Progression. Cells, 2021, 10(1):92. doi:10.3390/cells10010092. |
[33] | Stevenson FT, Bursten SL, Fanton C, et al. The 31-Kda Precursor of Interleukin-1-Alpha Is Myristoylated on Specific Lysines within the 16-Kda N-Terminal Propiece. Proc Natl Acad Sci U S A., 1993, 90(15):7245-7249. doi:10.1073/pnas.90.15.7245. |
[34] |
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol, 2009, 27:519-550. doi:10.1146/annurev.immunol.021908.132612.
pmid: 19302047 |
[35] | Fettelschoss A, Kistowska M, Leibundgut-Landmann S, et al. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc Natl Acad Sci U S A., 2011, 108(44):18055-18060. doi:10.1073/pnas.1109176108. |
[36] | Mandinova A, Soldi R, Graziani I, et al. S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells. J Cell Sci, 2003, 116(13):2687-2696. doi:10.1242/jcs.00471. |
[37] | Nickel W. The mystery of nonclassical protein secretion-A current view on cargo proteins and potential export routes. Eur J Biochem, 2003, 270(10):2109-2119. doi:10.1046/j.1432-1033.2003.03577.x. |
[38] | Prudovsky I, Mandinova A, Soldi R, et al. The non-classical export routes: FGF1 and IL-1α point the way. J Cell Sci, 2003, 116(24):4871-4881. doi:10.1242/jcs.00872. |
[39] | Andrei C, Margiocco P, Poggi A, et al. Phospholipases C and A2 control lysosome-mediated IL-1β secretion implications for inflammatory processes. Proc Natl Acad Sci U S A., 2004, 101(26):9745-9750. doi:10.1073/pnas.0308558101. |
[40] |
Andrei C, Dazzi C, Lotti L, et al. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol Biol Cell, 1999, 10(5):1463-1475. doi:10.1091/mbc.10.5.1463.
pmid: 10233156 |
[41] | Qu Y, Franchi L, Nunez G, et al. Nonclassical IL-1β Secretion Stimulated by P2X7 Receptors Is Dependent on Inflammasome Activation and Correlated with Exosome Release in Murine Macrophages. J Immunol, 2007, 179(3):1913-1925. doi:10.4049/jimmunol.179.3.1913. |
[42] |
Evavold CL, Ruan J, Tan Y, et al. The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 2018, 48(1):35-44.e6. doi:10.1016/j.immuni.2017.11.013.
pmid: 29195811 |
[43] | Xia SY, Zhang ZB, Magupalli VG, et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860):607-611. doi:10.1038/s41586-021-03478-3. |
[44] |
Sugawara I, Yamada H, Hua S, et al. Role of interleukin (IL)-1 type 1 receptor in mycobacterial infection. Microbiol Immunol, 2001, 45(11):743-750. doi:10.1111/j.1348-0421.2001.tb01310.x.
pmid: 11791667 |
[45] |
Yamada H, Mizumo S, Horai R, et al. Protective role of interleukin-1 in mycobacterial infection in IL-1 α/β double-knockout mice. Lab Invest, 2000, 80(5):759-767. doi:10.1038/labinvest.3780079.
pmid: 10830786 |
[46] |
Juffermans NP, Florquin S, Camoglio L, et al. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis, 2000, 182(3):902-908. doi:10.1086/315771.
pmid: 10950787 |
[47] | Di Paolo NC, Shafiani S, Day T, et al. Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity, 2015, 43(6):1125-1136. doi:10.1016/j.immuni.2015.11.016. |
[48] | Moorlag S, Khan N, Novakovic B, et al. β-Glucan Induces Protective Trained Immunity against Mycobacterium tuberculosis Infection: A Key Role for IL-1. Cell Rep, 2020, 31(7):107634. doi:10.1016/j.celrep.2020.107634. |
[49] | Lovey A, Verma S, Kaipilyawar V, et al. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat Commun, 2022, 13(1):884. doi:10.1038/s41467-022-28506-2. |
[50] | Lee MR, Chang LY, Chang CH, et al. Differed IL-1 β Response between Active TB and LTBI Cases by Ex Vivo Stimulation of Human Monocyte-Derived Macrophage with TB-Specific Antigen. Dis Markers, 2019, 2019:7869576. doi:10.1155/2019/7869576. |
[51] | Sousa J, Ca B, Maceiras AR, et al. Mycobacterium tuberculosis associated with severe tuberculosis evades cytosolic surveillance systems and modulates IL-1β production. Nat Commun, 2020, 11(1):1949. doi:10.1038/s41467-020-15832-6. |
[52] | Mishra BB, Rathinam VA, Martens GW, et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP 3 inflammasome-dependent processing of IL-1beta. Nat Immunol, 2013, 14(1):52-60. doi:10.1038/ni.2474. |
[53] | Laval T, Chaumont L, Demangel C. Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev, 2021, 301(1):84-97. doi:10.1111/imr.12952. |
[54] | Mayer-Barber KD, Andrade BB, Oland SD, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature, 2014, 511(7507):99-103. doi:10.1038/nature13489. |
[55] |
Gleeson LE, Sheedy FJ, Palsson-Mcdermott EM, et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol, 2016, 196(6):2444-2449. doi:10.4049/jimmunol.1501612.
pmid: 26873991 |
[56] |
Hackett EE, Charles-Messance H, O’leary SM, et al. Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21. Cell Rep, 2020, 30(1):124-136 e4. doi:10.1016/j.celrep.2019.12.015.
pmid: 31914380 |
[57] | Shi L, Salamon H, Eugenin EA, et al. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep, 2015, 5:18176. doi:10.1038/srep18176. |
[58] |
Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol, 2016, 46(11):2574-2586. doi:10.1002/eji.201546259.
pmid: 27624090 |
[59] | Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444):238-242. doi:10.1038/nature11986. |
[60] |
Palsson-Mcdermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab, 2015, 21(1):65-80. doi:10.1016/j.cmet.2014.12.005.
pmid: 25565206 |
[61] |
Braverman J, Sogi KM, Benjamin D, et al. HIF-1α Is an Essential Mediator of IFN-γ-Dependent Immunity to Mycobacterium tuberculosis. J Immunol, 2016, 197(4):1287-1297. doi:10.4049/jimmunol.1600266.
pmid: 27430718 |
[62] |
Escoll P, Buchrieser C. Metabolic reprogramming: an innate cellular defence mechanism against intracellular bacteria? Curr Opin Immunol, 2019, 60:117-123. doi:10.1016/j.coi.2019.05.009.
pmid: 31247377 |
[63] |
Mills EL, Kelly B, Logan A, et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, 167(2):457-470.e13. doi:10.1016/j.cell.2016.08.064.
pmid: 27667687 |
[64] |
Newsholme P, Curi R, Pithon Curi TC, et al. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem, 1999, 10(6):316-324. doi:10.1016/s0955-2863(99)00022-4.
pmid: 15539305 |
[65] | Cruzat V, Macedo Rogero M, Noel Keane K, et al. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 2018, 10(11):1564. doi:10.3390/nu10111564. |
[66] | Jiang QK, Qiu YP, Kurland IJ, et al. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. Mbio, 2022, 13(4). doi:10.1128/mbio.01274-22. |
[67] | Cordes T, Metallo CM. Itaconate Alters Succinate and Coenzyme A Metabolism via Inhibition of Mitochondrial Complex Ⅱ and Methylmalonyl-CoA Mutase. Metabolites, 2021, 11(2):117. doi:10.3390/metabo11020117. |
[68] |
Lampropoulou V, Sergushichev A, Bambouskova M, et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab, 2016, 24(1):158-166. doi:10.1016/j.cmet.2016.06.004.
pmid: 27374498 |
[69] | Bambouskova M, Gorvel L, Lampropoulou V, et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF 3 inflammatory axis. Nature, 2018, 556(7702):501-504. doi:10.1038/s41586-018-0052-z. |
[70] | Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf 2 via alkylation of KEAP1. Nature, 2018, 556(7699):113-117. doi:10.1038/nature25986. |
[71] |
He L, Weber KJ, Schilling JD. Glutamine Modulates Macrophage Lipotoxicity. Nutrients, 2016, 8(4):215. doi:10.3390/nu8040215.
pmid: 27077881 |
[72] |
Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol, 2008, 8(5):349-361. doi:10.1038/nri2294.
pmid: 18437155 |
[73] | Chen M, Divangahi M, Gan H, et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA 4 in the induction of macrophage death. J Exp Med, 2008, 205(12):2791-2801. doi:10.1084/jem.20080767. |
[74] | Travar M, Petkovic M, Verhaz A. Type Ⅰ, Ⅱ, and Ⅲ Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection. Arch Immunol Ther Exp (Warsz), 2016, 64(1):19-31. doi:10.1007/s00005-015-0365-7. |
[75] |
Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev, 2004, 202:8-32. doi:10.1111/j.0105-2896.2004.00204.x.
pmid: 15546383 |
[76] |
Kotenko SV, Gallagher G, Baurin VV, et al. IFN-λs mediate antiviral protection through a distinct class Ⅱ cytokine receptor complex. Nat Immunol, 2003, 4(1):69-77. doi:10.1038/ni875.
pmid: 12483210 |
[77] |
Sheppard P, Kindsvogel W, Xu WF, et al. IL-28, IL-29 and their class Ⅱ cytokine receptor IL-28R. Nat Immunol, 2003, 4(1):63-68. doi:10.1038/ni873.
pmid: 12469119 |
[78] |
Mayer-Barber KD, Andrade BB, Barber DL, et al. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity, 2011, 35(6):1023-1034. doi:10.1016/j.immuni.2011.12.002.
pmid: 22195750 |
[79] |
Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest, 2010, 120(5):1674-1682. doi:10.1172/JCI40817.
pmid: 20389020 |
[80] |
Clay H, Volkman HE, Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity, 2008, 29(2):283-294. doi:10.1016/j.immuni.2008.06.011.
pmid: 18691913 |
[81] |
Chavez-Galan L, Vesin D, Segueni N, et al. Tumor Necrosis Factor and Its Receptors Are Crucial to Control Mycobacterium bovis Bacillus Calmette-Guerin Pleural Infection in a Murine Model. Am J Pathol, 2016, 186(9):2364-2377. doi:10.1016/j.ajpath.2016.05.015.
pmid: 27456129 |
[1] | You Guoqing, Liu Wenguo, Feng Xin, Yu Min, Shi Lin, Hu Yan. Analysis of fluoroquinolones resistance in multidrug-resistant tuberculosis patients in Chongqing from 2020 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 475-479. |
[2] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
[3] | Luo Yi, Tao Fengxi, Li Guofei, Zhang Huihui, Peng Peng, Ren Yi, Liu Suyang. Environmental monitoring and analysis of Mycobacterium tuberculosis and discussion on the effect of disinfection equipment in a tuberculosis hospital [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 135-140. |
[4] | Luo Dan, Chen Songhua, Zhang Yu, Wang Wei, Wu Qian, Wu Yonghao, Liu Kui, Chen Bin. Analysis on the current status and trend of MTB/HIV co-infection screening in Zhejiang Province from 2015 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 443-448. |
[5] | Cao Xuefang, He Yongpeng, Gao Lei. Research progress in current situation of Mycobacterium tuberculosis infection and preventive treatment in HIV/AIDS population [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 511-516. |
[6] | Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 415-419. |
[7] | YANG Kui, CHEN Wei. Advances about screening and preventive treatment of Mycobacterium tuberculosis latent infection in students [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 361-365. |
[8] | SONG Yi-yan, CHEN Jie, LI Fang-hua, LI Ruo-nan, ZHAO Jing, YU Da-wei, SONG Hua-feng, XU Jun-chi, WU Min-juan, XU Ping. Analysis of 44 drug resistance patients with tuberculosis and received repeated treatment [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 239-242. |
[9] | FENG Xin, HU Yan, SHEN Jing, ZHAN Jian. Analysis of Mycobacterium tuberculosis drug resistance in drug-resistance monitoring sites in Chongqing Municipality (2014-2019) [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 251-255. |
[10] | LI Jing, ZHANG Yan, WU Qian-hong. Research progress on free DNA detection of Mycobacterium tuberculosis of non-sputum samples in tuberculosis diagnosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 277-282. |
[11] | ZHOU Bi-xia, YUAN Gong-ling, ZENG Ling-wu, ZHU Yi, CHENG Xi, LI Min, WU Mei-ying. Comparative analysis of CT signs of Mycobacterium kansasii pulmonary disease and pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 125-130. |
[12] | LIU Xin-yu, ZHANG Qian, SUN Qian. Analysis of drug resistance of multidrug-resistant Mycobacterium tuberculosis to multiple drugs in Changping District of Beijing [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 169-173. |
[13] | ZHANG Zhi-guo, GUO Hai-ping, PANG Yu. Considerations for the application of laboratory diagnostics in detecting drug-resistant tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 13-17. |
[14] | YI Jun-li, YANG Xin-yu, ZHANG Jie, TIAN Li-li, DING Bei-chuan, WU Wen-qing. Application evaluation of three methods for identification between Mycobacterium tuberculosis complex and non-tuberculous mycobacteria [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 240-244. |
[15] | FENG Feng, TANG Feng-zhen, YAO Ming-mei, CHENG Lu, DU Li-jun. Application progress of proteome in research of the Mycobacterium tuberculosis infection [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 174-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||