Journal of Tuberculosis and Lung Disease ›› 2020, Vol. 1 ›› Issue (2): 174-178.doi: 10.3969/j.issn.2096-8493.2020.02.017
• Review Articles • Previous Articles Next Articles
FENG Feng, TANG Feng-zhen, YAO Ming-mei, CHENG Lu, DU Li-jun()
Received:
2020-07-13
Online:
2020-09-30
Published:
2020-10-15
Contact:
DU Li-jun
E-mail:147372970@qq.com
FENG Feng, TANG Feng-zhen, YAO Ming-mei, CHENG Lu, DU Li-jun. Application progress of proteome in research of the Mycobacterium tuberculosis infection[J]. Journal of Tuberculosis and Lung Disease , 2020, 1(2): 174-178. doi: 10.3969/j.issn.2096-8493.2020.02.017
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2020.02.017
[1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] |
Klepárník K, Bocek P. Electrophoresis today and tomorrow: Helping biologists’ dreams come true. Bioessays, 2010,32(3):218-226. doi: 10.1002/bies.200900152.
URL pmid: 20127703 |
[3] |
Zhang X, Fang A, Riley CP, et al. Multi-dimensional liquid chromatography in proteomics--a review. Anal Chim Acta, 2010,664(2):101-113. doi: 10.1016/j.aca.2010.02.001.
URL pmid: 20363391 |
[4] |
Pezzatti J, Boccard J, Codesido S, et al. Implementation of liquid chromatography-high resolution mass spectrometry methods for untargeted metabolomic analyses of biological samples: A tutorial. Anal Chim Acta, 2020,1105:28-44. doi: 10.1016/j.aca.2019.12.062.
URL pmid: 32138924 |
[5] | 哈斯来提阿依·买买提, 胡昕, 齐曼古力·吾守尔. 同位素标记相对和绝对定量结合二维液相色谱-串联质谱技术在结核病诊断中的应用. 结核病与肺部健康杂志, 2018,7(3):217-220. doi: 10.3969/j.issn.2095-3755.2018.03.015. |
[6] |
Russell DG. Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol Rev, 2011,240(1):252-268. doi: 10.1111/j.1600-065X.2010.00984.x.
doi: 10.1111/j.1600-065X.2010.00984.x URL pmid: 21349098 |
[7] |
Menon D, Singh K, Pinto SM, et al. Quantitative lipid droplet proteomics reveals Mycobacterium tuberculosis induced alterations in macrophage response to infection. ACS Infect Dis, 2019,5(4):559-569. doi: 10.1021/acsinfecdis.8b00301.
doi: 10.1021/acsinfecdis.8b00301 URL pmid: 30663302 |
[8] |
Budzik JM, Swaney DL, Jimenez-Morales D, et al. Dynamic post-translational modification profiling of Mycobacterium tuberculosis-infected primary macrophages. Elife, 2020,9:e51461. doi: 10.7554/eLife.51461.
doi: 10.7554/eLife.51461 URL pmid: 31951200 |
[9] |
Broset E, Martín C, Gonzalo-Asensio J. Evolutionary landscape of the Mycobacterium tuberculosis complex from the viewpoint of PhoPR: implications for virulence regulation and application to vaccine development. mBio, 2015,6(5):e01289-15. doi: 10.1128/mBio.01289-15.
URL pmid: 26489860 |
[10] |
Gonzalo-Asensio J, Soto CY, Arbués A, et al. The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J Bacteriol, 2008,190(21):7068-7078. doi: 10.1128/JB.00712-08.
doi: 10.1128/JB.00712-08 URL pmid: 18757548 |
[11] |
Zheng H, Lu L, Wang B, et al. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS One, 2008,3(6):e2375. doi: 10.1371/journal.pone.0002375.
doi: 10.1371/journal.pone.0002375 URL pmid: 18584054 |
[12] |
Verma R, Pinto SM, Patil AH, et al. Quantitative proteomic and phosphoproteomic analysis of H37Ra and H37Rv strains of Mycobacterium tuberculosis. J Proteome Res, 2017,16(4):1632-1645. doi: 10.1021/acs.jproteome.6b00983.
URL pmid: 28241730 |
[13] |
Peters JS, Calder B, Gonnelli G, et al. Identification of quantitative proteomic differences between Mycobacterium tuberculosis lineages with altered virulence. Front Microbiol, 2016,7:813. doi: 10.3389/fmicb.2016.00813.
doi: 10.3389/fmicb.2016.00813 URL pmid: 27303394 |
[14] |
Galagan JE, Minch K, Peterson M, et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013,499(7457):178-183. doi: 10.1038/nature12337.
doi: 10.1038/nature12337 URL pmid: 23823726 |
[15] |
Minch KJ, Rustad TR, Peterson EJ, et al. The DNA-binding network of Mycobacterium tuberculosis. Nat Commun, 2015,6:5829. doi: 10.1038/ncomms6829.
doi: 10.1038/ncomms6829 URL pmid: 25581030 |
[16] |
Płociński P, Macios M, Houghton J, et al. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucleic Acids Res, 2019,47(11):5892-5905. doi: 10.1093/nar/gkz251.
doi: 10.1093/nar/gkz251 URL pmid: 30957850 |
[17] |
Ortega C, Liao R, Anderson LN, et al. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol, 2014,12(1):e1001746. doi: 10.1371/journal.pbio.1001746.
doi: 10.1371/journal.pbio.1001746 URL pmid: 24409094 |
[18] |
Prisic S, Dankwa S, Schwartz D, et al. Extensive phosphory-lation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci U S A, 2010,107(16):7521-7526. doi: 10.1073/pnas.0913482107.
doi: 10.1073/pnas.0913482107 URL pmid: 20368441 |
[19] |
Gil M, Lima A, Rivera B, et al. New substrates and interactors of the mycobacterial Serine/Threonine protein kinase PknG identified by a tailored interactomic approach. J Proteomics, 2019,192:321-333. doi: 10.1016/j.jprot.2018.09.013.
doi: 10.1016/j.jprot.2018.09.013 URL pmid: 30267874 |
[20] |
Sharma D, Lata M, Singh R, et al. Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDI-TOF/MS. Front Microbiol, 2016,7:1816. doi: 10.3389/fmicb.2016.01816.
doi: 10.3389/fmicb.2016.01816 URL pmid: 27895634 |
[21] |
Wei W, Yan H, Zhao J, et al. Multi-omics comparisons of p-aminosalicylic acid (PAS) resistance in folC mutated and un-mutated Mycobacterium tuberculosis strains. Emerg Microbes Infect, 2019,8(1):248-261. doi: 10.1080/22221751.2019.1568179.
doi: 10.1080/22221751.2019.1568179 URL pmid: 30866779 |
[22] |
de Keijzer names>J, Mulder A, de Haas PE, et al. Thioridazine alters the cell-envelope permeability of Mycobacterium tuberculosis. J Proteome Res, 2016,15(6):1776-1786. doi: 10.1021/acs.jproteome.5b01037.
doi: 10.1021/acs.jproteome.5b01037 URL pmid: 27068340 |
[23] | 潘稚芬, 袁亚芳, 张君丽, 等. 结核分枝杆菌耐多药相关蛋白筛选及诊断价值研究. 预防医学, 2018,30(12):1212-1216. doi: 10.19485/j.cnki.issn2096-5087.2018.12.006. |
[24] |
Trutneva KA, Shleeva MO, Demina GR, et al. One-year old dormant,“Non-culturable” Mycobacterium tuberculosis preserves significantly diverse protein profile. Front Cell Infect Microbiol, 2020,10:26. doi: 10.3389/fcimb.2020.00026.
doi: 10.3389/fcimb.2020.00026 URL pmid: 32117801 |
[25] |
Schubert OT, Ludwig C, Kogadeeva M, et al. Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe, 2015,18(1):96-108. doi: 10.1016/j.chom.2015.06.001.
doi: 10.1016/j.chom.2015.06.001 URL pmid: 26094805 |
[26] |
O’Garra A, Redford PS, McNab FW, et al. The immune response in tuberculosis. Annu Rev Immunol, 2013,31:475-527. doi: 10.1146/annurev-immunol-032712-095939.
doi: 10.1146/annurev-immunol-032712-095939 URL |
[27] |
Pai M, Denkinger CM, Kik SV, et al. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev, 2014,27(1):3-20. doi: 10.1128/CMR.00034-13.
doi: 10.1128/CMR.00034-13 URL |
[28] |
Bark CM, Manceur AM, Malone LL, et al. Identification of Host Proteins Predictive of Early Stage Mycobacterium tuberculosis Infection. EBioMedicine, 2017,21:150-157. doi: 10.1016/j.ebiom.2017.06.019.
doi: 10.1016/j.ebiom.2017.06.019 URL pmid: 28655597 |
[29] |
Chen Y, Cao S, Liu Y, et al. Potential role for Rv2026c- and Rv2421c- specific antibody responses in diagnosing active tuberculosis. Clin Chim Acta, 2018,487:369-376. doi: 10.1016/j.cca.2018.09.008.
doi: 10.1016/j.cca.2018.09.008 URL pmid: 30195451 |
[30] |
Mateos J, Estévez O, González-Fernández Á, et al. Serum proteomics of active tuberculosis patients and contacts reveals unique processes activated during Mycobacterium tuberculosis infection. Sci Rep, 2020,10(1):3844. doi: 10.1038/s41598-020-60753-5.
doi: 10.1038/s41598-020-60753-5 URL pmid: 32123229 |
[31] |
Kedia K, Wendler JP, Baker ES, et al. Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis. Tuberculosis (Edinb), 2018,112:52-61. doi: 10.1016/j.tube.2018.07.005.
doi: 10.1016/j.tube.2018.07.005 URL |
[1] | YI Jun-li, YANG Xin-yu, ZHANG Jie, TIAN Li-li, DING Bei-chuan, WU Wen-qing. Application evaluation of three methods for identification between Mycobacterium tuberculosis complex and non-tuberculous mycobacteria [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 240-244. |
[2] | WANG Le-le, YANG Song, TANG Shen-jie. Progress on changes of micronutrients and nutritional therapy of active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 281-284. |
[3] | Rena·Abulaiti, Kelibiena·Tuerxun, Dilinuer·Wufuer. Research progress on correlation between bronchial asthma and psychological disorders [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 285-288. |
[4] | REN Zhen-juan, ZHANG Hai-jie, SU Yun-kai, MA Yan, LIU Yao. Correlation between amikacin resistance and rrs gene mutation in multidrug-resistant Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 117-120. |
[5] | TANG Gui-hua, SUN Qian, WANG Xiao-fan, XIAN Hai-bin, ZHANG Qian, YANG Xiao-wei, WANG Li. The value of GeneXpert MTB/RIF technology in tuberculosis detection and resistance to rifampin [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 121-125. |
[6] | LIN Pei-xin, ZHANG Chen-chen. Current status and intervention progress of latent tuberculosis infection in student population [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 170-173. |
[7] | HU Xiao-guang, CHEN Can-can, ZHANG Ya-nan, MA Jun-yang, CHEN Wei. The main immune cells against Mycobacterium tuberculosis infection and their mechanisms [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(1): 71-77. |
[8] | YU Da-wei,SONG Hua-feng,QIU Wen-na,XUE Jing,LI Fang-hua,XU Ping. Application value of GeneXpert MTB/RIF in the detection of MTB rifampicin resistance [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 160-162. |
[9] | Yong-ming LIN,Xiao-wei HUANG,Shu-fang LIN,Shu-zhen WEI,Jian LIN,Yong ZHAO. Analysis of detection of rifampicin-resistant tuberculosis and rpoB gene mutation by using different methods [J]. Journal of Tuberculosis and Lung Health, 2019, 8(2): 121-126. |
[10] | Xue-zhi ZHANG,Bai-feng LIN,Xin-fa PEI,Li CHEN,Ying PENG,Lu. TANG. Application of light-emitting diode fluorescence microscopy in detection of Mycobacterium in county level laboratories [J]. Journal of Tuberculosis and Lung Health, 2019, 8(1): 38-41. |
[11] | Yi-min TANG,Juan-juan ZHANG,Tao-sheng YE,Guo-liang ZHANG,Ying-xia LIU. The values of different detection indicators in early screening for pleural adhesion in patients with tuberculous pleurisy [J]. Journal of Tuberculosis and Lung Health, 2018, 7(4): 298-304. |
[12] | Jie ZHANG,Yu-qin LIU,Yu-ze LI,Li-qing HAN,Shu-qin LIU,Hong-ming LI,Yang SUN,Yu-ling QI. Renal tuberculosis as manifestation of autonephrectomy in two cases and literature review [J]. Journal of Tuberculosis and Lung Health, 2018, 7(4): 255-260. |
[13] | Xin HU,Wushouer Qimanguli·. Research progress of isobaric tags for relative and absolute quantitation and two-dimensional liquid chromatography-tandem mass spectrometry in the diagnosis of tuberculosis [J]. Journal of Tuberculosis and Lung Health, 2018, 7(3): 217-220. |
[14] | Xiao-ming YANG,Zhong-da LIU,Zun-jing ZHANG,Jing GUO. Clinical characteristics and the treatment of traditional Chinese medicine in senile pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Health, 2018, 7(3): 213-216. |
[15] | Chuang-yue HONG,Jin-li LI,Guang-lu ZHAO,Jing GUI,Yu-mei ZHU,Feng WANG. Rapid detection of Mycobacterium tuberculosis drug resistance by GenoType MTBDR plus assay [J]. Journal of Tuberculosis and Lung Health, 2018, 7(3): 180-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||