Journal of Tuberculosis and Lung Disease ›› 2025, Vol. 6 ›› Issue (4): 382-392.doi: 10.19983/j.issn.2096-8493.20252002
• Guideline·Standard·Consensus • Previous Articles Next Articles
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association
Received:
2025-02-28
Online:
2025-08-20
Published:
2025-08-08
Contact:
Yu Fangyou, Email: Supported by:
CLC Number:
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China[J]. Journal of Tuberculosis and Lung Disease , 2025, 6(4): 382-392. doi: 10.19983/j.issn.2096-8493.20252002
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20252002
药物中文名 | 药物英文名 | 药物英文缩写 | 推荐级别 | 推荐浓度范围(mg/L) |
---|---|---|---|---|
利福平 | Rifampicin | RIF | 最高 | 0.016~2 |
异烟肼 | Isoniazid | INH | 最高 | 0.016~2 |
左氧氟沙星 | Levofloxacin | LFX | 最高 | 0.06~8 |
莫西沙星 | Moxifloxacin | MFX | 最高a | - |
贝达喹啉 | Bedaquiline | BDQ | 最高 | 0.008~1 |
利奈唑胺 | Linezolid | LZD | 最高 | 0.06~4 |
氯法齐明 | Clofazimine | CFZ | 最高 | 0.008~1 |
德拉马尼 | Delamanid | DLM | 最高 | 0.002~0.25 |
普托马尼 | Pretomanid | PMD | 最高b | - |
吡嗪酰胺 | Pyrazinamide | PZA | 最高c | - |
乙胺丁醇 | Ethambutol | EMB | 较高 | 0.125~8 |
D-环丝氨酸 | D-cycloserine | DCS | 较高 | 1~64 |
特立齐酮 | Terizidone | TZD | 较高d | - |
乙硫异烟胺 | Ethionamide | ETO | 较高 | 0.125~16 |
丙硫异烟胺 | Prothionamide | PTO | 较高e | - |
卡那霉素 | Kanamycin | KAN | 一般f | 0.125~16 |
阿米卡星 | Amikacin | AMK | 一般g | - |
链霉素 | Streptomycin | STR | 不推荐 | - |
卷曲霉素 | Capreomycin | CPM | 不推荐 | - |
对氨基水杨酸 | Para-aminosalicylic acid | PAS | 不推荐h | - |
利福喷丁 | Rifapentine | RFT | 不推荐i | - |
利福布汀 | Rifabutin | RFB | 不推荐 | - |
氧氟沙星 | Ofloxacin | OFX | 不推荐j | - |
药物名称 (缩写) | WHO推荐ECOFF 值(mg/L)[ | CLSI推荐折点 (mg/L)[ | EUCAST推荐 折点(mg/L)[ | CRyPTIC Consortium 推荐ECOFF值 (UKMYC6/5)(mg/L)[ | 本共识拟临时 推荐折点(mg/L) |
---|---|---|---|---|---|
利福平(RIF) | 0.5 | 0.5 | - | 0.5 | 0.5 |
异烟肼(INH) | 0.125 | 0.12 | - | 0.1(0.2/0.4为临界MIC) | 0.125 |
左氧氟沙星(LFX) | 1 | - | - | 1 | 1 |
莫西沙星(MFX) | - | - | - | 1 | 0.5 |
贝达喹啉(BDQ) | 0.125(或0.25) | - | 0.25 | 0.25 | 0.25 |
利奈唑胺(LZD) | 1.0(或2.0) | - | - | 1 | 1 |
氯法齐明(CFZ) | 0.25(或0.5) | - | - | 0.25 | 0.25 |
德拉马尼(DLM) | 0.06(或0.125) | - | 0.06 | 0.12 | 0.125 |
普托马尼(PTM) | - | - | 2 | - | 2 |
乙胺丁醇(EMB) | 4 | ≤2.0为敏感,4.0为 不确定,≥8.0为耐药 | - | 4(4为临界MIC) | ≤2.0为敏感,4.0为不 确定结果,≥8.0为耐药 |
D-环丝氨酸(DCS) | 32(或64) | - | - | - | 32 |
乙硫异烟胺(ETO) | 4 | - | - | 4(4为临界MIC) | 4 |
卡那霉素(KAN) | 4 | - | - | 4 | 4 |
阿米卡星(AMK) | - | - | - | 1 | 1 |
链霉素(STR) | - | - | - | - | 2 |
卷曲霉素(CPM) | - | - | - | - | - |
对氨基水杨酸(PAS) | - | - | - | - | 2 |
利福布汀(RFB) | - | - | - | 0.12 | - |
利福喷丁(RFT) | - | - | - | - | - |
氧氟沙星(OFX) | - | - | - | - | 2 |
药物名称(缩写) | MIC值质控范围(mg/L)a | ||
---|---|---|---|
CLSI-冻干药粉微孔板[ | CLSI-冷冻微孔板[ | 其他研究 | |
利福平(RIF) | ≤0.12 | 0.06~0.25 | 0.03~0.25[ |
异烟肼(INH) | ≤0.12 | 0.03~0.12 | 0.03~0.25[ |
左氧氟沙星(LFX) | - | 0.12~1 | 0.12~1[ |
莫西沙星(MFX) | ≤0.5 | 0.06~0.5 | 0.06~0.5[ |
贝达喹啉(BDQ) | - | 0.015~0.06 | 0.015~0.06[ |
利奈唑胺(LZD) | - | 0.25~2 | 0.25~2[ |
氯法齐明(CFZ) | - | 0.03~0.25 | 0.03~0.25[ |
德拉马尼(DLM) | - | - | 0.002~0.016[ |
普托马尼(PMD) | - | - | - |
乙胺丁醇(EMB) | ≤0.5~2 | 0.25~2 | 0.25~2[ |
D-环丝氨酸(DCS) | - | - | 4~16[ |
特立齐酮(TZD) | - | - | - |
乙硫异烟胺(ETO) | 0.6~2.5 | - | - |
卡那霉素(KAN) | 1.2~5 | 0.25~2 | 0.25~2[ |
阿米卡星(AMK) | 0.25~1 | 0.25~2 | 0.25~2[ |
链霉素(STR) | 0.5~2 | - | - |
卷曲霉素(CPM) | - | 0.5~4 | 0.5~4[ |
对氨基水杨酸(PAS) | ≤0.5 | - | - |
利福喷丁(RFT) | - | - | - |
利福布汀(RFB) | ≤0.12 | - | - |
氧氟沙星(OFX) | 0.5~2 | 0.25~2 | 0.25~2[ |
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[3] | Tan Y, Hu Z, Zhao Y, et al. The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resis-tance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol, 2012, 50(1): 81-85. doi:10.1128/JCM.05092-11. |
[4] | Xia H, Zheng Y, Zhao B, et al. Assessment of a 96-Well Plate Assay of Quantitative Drug Susceptibility Testing for Mycobacterium Tuberculosis Complex in China. PLoS One, 2017, 12(1): e0169413. doi:10.1371/journal.pone.0169413. |
[5] | World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2022. |
[6] | European Committee on Antimicrobial Susceptibility Testing. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing[EB/OL].[2025-02-26]. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Area_of_Technical_Uncertainty_-_guidance_2019-1.pdf. |
[7] | Köser CU, Georghiou SB, Schön T, et al. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol, 2021, 59(4): e02328-20. doi:10.1128/JCM.02328-20. |
[8] |
Maurer FP, Courvalin P, Böttger EC, et al. Integrating forecast probabilities in antibiograms: a way to guide antimicrobial prescriptions more reliably?. J Clin Microbiol, 2014, 52(10):3674-3684. doi:10.1128/JCM.01645-14.
pmid: 25100821 |
[9] |
Valsesia G, Hombach M, Maurer FP, et al. The Resistant-Population Cutoff (RCOFF): a New Concept for Improved Characterization of Antimicrobial Susceptibility Patterns of Non-Wild-Type Bacterial Populations. J Clin Microbiol, 2015, 53(6):1806-1811. doi:10.1128/JCM.03505-14.
pmid: 25762769 |
[10] |
Valsesia G, Roos M, Böttger EC, et al. A statistical approach for determination of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol, 2015, 53(6):1812-1822. doi:10.1128/JCM.03506-14.
pmid: 25762772 |
[11] |
Blöchliger N, Keller PM, Böttger EC, et al. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities. J Antimicrob Chemother, 2017, 72(9):2553-2561. doi:10.1093/jac/dkx196.
pmid: 28859448 |
[12] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
pmid: 34615575 |
[13] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi:10.1093/jac/dkaa136.
pmid: 32361756 |
[14] | CRyPTIC Consortium. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat Commun, 2024, 15(1):488. doi:10.1038/s41467-023-44325-5. |
[15] | Jouet A, Gaudin C, Badalato N, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J, 2021, 57(3): 2002338. doi:10.1183/13993003.02338-2020. |
[16] | Vargas R Jr, Freschi L, Spitaleri A, et al. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resis-tance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2021, 65(11): e0116421. doi:10.1128/AAC.01164-21. |
[17] |
Foongladda S, Banu S, Pholwat S, et al. Comparison of TaqMan Array Card and MYCOTBTM with conventional phenotypic susceptibility testing in MDR-TB. Int J Tuberc Lung Dis, 2016, 20(8):1105-1112. doi:10.5588/ijtld.15.0896.
pmid: 27393547 |
[18] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[19] |
Ismail NA, Ismail F, Joseph L, et al. Epidemiological cut-offs for Sensititre susceptibility testing of Mycobacterium tuberculosis: interpretive criteria cross validated with whole genome sequencing. Sci Rep, 2020, 10(1):1013. doi:10.1038/s41598-020-57992-x.
pmid: 31974497 |
[20] | Heysell SK, Moore JL, Peloquin CA, et al. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009—2014. Tuberc Respir Dis (Seoul), 2015, 78(2):78-84. doi:10.4046/trd.2015.78.2.78. |
[21] |
Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis, 2018, 18(12):1350-1359. doi:10.1016/S1473-3099(18)30496-1.
pmid: 30342828 |
[22] | Beckert P, Sanchez-Padilla E, Merker M, et al. MDR M.tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Med, 2020, 12(1):104. doi:10.1186/s13073-020-00793-8. |
[23] | 夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读. 中国防痨杂志, 2022, 44(7): 641-645. doi:10.19982/j.issn.1000-6621.20220187. |
[24] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[25] | Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-drug microtitre plate containing bedaquiline and delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018, 62(9): e00344-18. doi:10.1128/AAC.00344-18. |
[26] | Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 2nd ed. Waynesboro, Virginia: Clinical and Laboratory Standards Institute, 2023. |
[27] | Schön T, Köser CU, Werngren J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex?. Clin Microbiol Infect, 2020, 26(11):1453-1455. doi:10.1016/j.cmi.2020.07.037. |
[28] | CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4): 2200239. doi:10.1183/13993003.00239-2022. |
[29] | 中华人民共和国国家卫生健康委员会. WS/T 807—2022 临床微生物培养、鉴定和药敏检测系统的性能验证. 2022-01-02. |
[30] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing of Selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. J Clin Microbiol, 2016, 54(12):2963-2968. doi:10.1128/JCM.01138-16.
pmid: 27654338 |
[31] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine Bedaquiline MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing. J Clin Microbiol, 2016, 54(12): 2956-2962. doi:10.1128/JCM.01123-16.
pmid: 27654337 |
[32] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTECTM MGITTM 960 system. J Antimicrob Chemother, 2016, 71(6): 1532-1539. doi:10.1093/jac/dkw044.
pmid: 27076101 |
[33] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (011-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[34] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (034-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[35] | World Health Organization. WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization, 2019. |
[36] | Clinical and Laboratory Standards Institute. CLSI M100: Performance Standards for Antimicrobial Susceptibility Testing (35th ed)[EB/OL]. [2025-02-26]. https://clsi.org/shop/standards/m100/. |
[37] | 中华人民共和国国家卫生健康委员会. 国家卫生健康委关于印发人间传染的病原微生物目录的通知. 国卫科教发〔2023〕24 号. 2023-08-18. |
[38] | 中华人民共和国国家卫生和计划生育委员会. WS 233—2017 病原微生物实验室生物安全通用准则. 2017-07-24. |
[39] | 中华人民共和国国家卫生健康委员会. 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定. 卫生部令第45号. 2005-12-28. |
[1] | Duan Hongfei. Interpretation of the World Health Organization key updates for endTB regimens to treat multidrug-resistant tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 361-364. |
[2] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 365-381. |
[3] | Wei Daijue, Sun Jianjun, Chen Yan, Wang Shijun, Chang Yamei, Wei Nianhuan, Zhang Xin, Tong Chongxiang. Analysis of drug resistance of 2941 clinical isolates of Mycobacterium tuberculosis in Gansu Province [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 444-448. |
[4] | Qi Dan, Wang Sheng, Liu Min, Gao Meiqin, Shi Feng, Li Bing, Bai Jun, Hao Ruixia, Wang Dong. Analysis of the etiological positive rate among pulmonary tuberculosis patients in designated tuberculosis hospitals in Ordos,Inner Mongolia Autonomous Region, 2015—2024 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 456-463. |
[5] | Zou Jingjing, Cai Bin, Shi Jixia, Yang Li, Zhang Lumin. Summary of the best evidence for nutritional management in patients with acute exacerbation of chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(3): 261-268. |
[6] | Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Chinese Society for Tuberculosis of China International Exchange and Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(2): 143-157. |
[7] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group , Joint Tuberculosis Professional Branch of Chinese Antituberculosis Association , AIDS Surgery Professional Committee of Chinese Association of STD and AIDS Prevention and Control , Western China Bone Tuberculosis Alliance , North China Bone Tuberculosis Alliance . Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(2): 158-167. |
[8] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[9] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[10] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[11] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[12] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[13] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[14] | Yuan Yonglong, Li Huimei, Ma Dedong. Metagenomic next-generation sequencing assisted in the diagnosis of psittacosis: a case report and literature review [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 113-119. |
[15] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||