Journal of Tuberculosis and Lung Disease ›› 2025, Vol. 6 ›› Issue (5): 587-597.doi: 10.19983/j.issn.2096-8493.20250049
• Review Articles • Previous Articles Next Articles
Abulimiti Abudukadier1, Li Peibo2, Xie Jianping1,2(
)
Received:2025-03-23
Online:2025-10-20
Published:2025-10-15
Contact:
Xie Jianping
E-mail:georgex@swu.edu.cn
Supported by:CLC Number:
Abulimiti Abudukadier, Li Peibo, Xie Jianping. 2024 global advances in tuberculosis drug development: multi-target strategies, breakthroughs in drug resistance mechanisms, and personalized treatment[J]. Journal of Tuberculosis and Lung Disease , 2025, 6(5): 587-597. doi: 10.19983/j.issn.2096-8493.20250049
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20250049
| [1] | 吴春艳. 结核病耐药性的发展趋势与新型抗结核药物的研发[C]// 中国防痨协会,重庆智飞生物制品股份有限公司.第35届中国防痨协会全国学术大会暨第四届中国防痨科技颁奖大会论文汇编(临床篇).贵州航天医院呼吸与危重症医学科, 2024:539. doi:10.26914/c.cnkihy.2024.040239. |
| [2] | Cevik M, Thompson LC, Upton C, et al. Bedaquiline-pretomanid-moxifloxacin-pyrazinamide for drug-sensitive and drug-resistant pulmonary tuberculosis treatment: a phase 2c, open-label, multicentre, partially randomised controlled trial. Lancet Infect Dis, 2024, 24(9): 1003-1014. doi:10.1016/S1473-3099(24)00223-8. |
| [3] | 李琦, 初乃惠. 基于临床需求,加快抗结核药物研发. 中国临床医生杂志, 2024, 52(2): 127-129. |
| [4] | Zhang X, Lun S, Li YX, et al. Structure-based development of N-Arylindole derivatives as Pks 13 inhibitors against Mycobacterium tuberculosis. Eur J Med Chem, 2025, 283: 117148. doi:10.1016/j.ejmech.2024.117148. |
| [5] | Liu T, Meng J, Wang B, et al. Identification of BMVC-8C3O as a novel Pks 13 inhibitor with anti-tuberculosis activity. Tuberculosis (Edinb), 2025, 150: 102579. doi:10.1016/j.tube.2024.102579. |
| [6] | Krieger IV, Yalamanchili S, Dickson P, et al. Inhibitors of the Thioesterase Activity of Mycobacterium tuberculosis Pks 13 Discovered Using DNA-Encoded Chemical Library Screening. ACS Infect Dis, 2024, 10(5): 1561-1575. doi:10.1021/acsinfecdis.3c00592. |
| [7] | Samoon R, Sau S, Roy A, et al. Development and Evaluation of Bis-benzothiazoles as a New Class of Benzothiazoles Targeting DprE1 as Antitubercular Agents. ACS Infect Dis, 2024, 10(9): 3320-3331. doi:10.1021/acsinfecdis.4c00415. |
| [8] | Zhao L, Liu B, Tong HHY, et al. Inhibitor binding and disruption of coupled motions in MmpL 3 protein: Unraveling the mechanism of trehalose monomycolate transport. Protein Sci, 2024, 33(10): e5166. doi:10.1002/pro.5166. |
| [9] | Ray R, Das S, Birangal SR, et al. Developing novel indoles as antitubercular agents and simulated annealing-based analysis of their binding with MmpL3. Future Med Chem, 2025, 17(1): 19-34. doi:10.1080/17568919.2024.2444872. |
| [10] | Mi Kim Y, Park Y, Soon Son E, et al. Design, synthesis, biological evaluation study of spirocyclic POM analogues as novel MmpL 3 anti-tubercular agent. Bioorg Chem, 2024, 153: 107823. doi:10.1016/j.bioorg.2024.107823. |
| [11] | Rani N, Rajmani RS, Surolia A. Identification of an Isoxazole Derivative as an Antitubercular Compound for Targeting the FadD Enzymes of Mycobacterium tuberculosis. J Med Chem, 2025, 68(1): 270-286. doi:10.1021/acs.jmedchem.4c01844. |
| [12] | Kalera K, Liu R, Lim J, et al. Targeting Mycobacterium tuberculosis Persistence through Inhibition of the Trehalose Catalytic Shift. ACS Infect Dis, 2024, 10(4): 1391-1404. doi:10.1021/acsinfecdis.4c00138. |
| [13] | Saha P, Sau S, Kalia NP, et al. Antitubercular activity of 2-mercaptobenzothiazole derivatives targeting Mycobacterium tuberculosis type Ⅱ NADH dehydrogenase. RSC Med Chem, 2024, 15(5): 1664-1674. doi:10.1039/d4md00118d. |
| [14] | Saha P, Sau S, Kalia NP, et al. 2-Aryl-Benzoimidazoles as Type Ⅱ NADH Dehydrogenase Inhibitors of Mycobacterium tuberculosis. ACS Infect Dis, 2024, 10(10): 3699-3711. doi:10.1021/acsinfecdis.4c00710. |
| [15] | Saha P, Das S, Indurthi HK, et al. Cytochrome bd oxidase: an emerging anti-tubercular drug target. RSC Med Chem, 2024, 15(3): 769-787. doi:10.1039/d3md00587a. |
| [16] | Kovalova T, Krol S, Gamiz-Hernandez A P, et al. Inhibition mechanism of potential antituberculosis compound lansoprazole sulfide. Proc Natl Acad Sci U S A, 2024, 121(47): e2412780121. doi:10.1073/pnas.2412780121. |
| [17] | Presloid CJ, Jiang J, Kandel P, et al. ClpS Directs Degradation of N-Degron Substrates With Primary Destabilizing Residues in Mycolicibacterium smegmatis. Mol Microbiol, 2025, 123(1): 16-30. doi:10.1111/mmi.15334. |
| [18] | Won HI, Zinga S, Kandror O, et al. Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy. Nat Commun, 2024, 15(1): 4065. doi:10.1038/s41467-024-48506-8. |
| [19] | Junk L, Schmiedel VM, Guha S, et al. Homo-BacPROTAC-induced degradation of ClpC 1 as a strategy against drug-resis-tant mycobacteria. Nat Commun, 2024, 15(1): 2005. doi:10.1038/s41467-024-46218-7. |
| [20] | Woodgate J, Sumang FA, Salliss ME, et al. Mode of Action and Mechanisms of Resistance to the Unusual Polyglycosylated Thiopeptide Antibiotic Persiathiacin A. ACS Infect Dis, 2025, 11(1): 155-163. doi:10.1021/acsinfecdis.4c00503. |
| [21] | Sterle M, Habjan E, Piga M, et al. Development of narrow-spectrum topoisomerase-targeting antibacterials against mycobacteria. Eur J Med Chem, 2024, 276: 116693. doi:10.1016/j.ejmech.2024.116693. |
| [22] | Gedeon A, Yab E, Dinut A, et al. Molecular mechanism of a triazole-containing inhibitor of Mycobacterium tuberculosis DNA gyrase. iScience, 2024, 27(10): 110967. doi:10.1016/j.isci.2024.110967. |
| [23] | Toth ZS, Leveles I, Nyiri K, et al. The homodimerization domain of the Stl repressor is crucial for efficient inhibition of mycobacterial dUTPase. Sci Rep, 2024, 14(1): 27171. doi:10.1038/s41598-024-76349-2. |
| [24] | Wu J, Zhang Y, Li W, et al. Mycobacterium tuberculosis Suppresses Inflammatory Responses in Host through Its Cholesterol Metabolites. ACS Infect Dis, 2024, 10(10): 3650-3663. doi:10.1021/acsinfecdis.4c00529. |
| [25] | Paterson RL, La Manna MP, Arena De Souza V, et al. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2024, 121(19): e2318003121. doi:10.1073/pnas.2318003121. |
| [26] | Qin L, Xu J, Chen J, et al. Cell-autonomous targeting of arabinogalactan by host immune factors inhibits mycobacterial growth. Elife, 2024, 13: RP92737. doi:10.7554/eLife.92737. |
| [27] | Yan MY, Li H, Qu YM, et al. CRISPR Screening and Comparative LC-MS Analysis Identify Genes Mediating Efficacy of Delamanid and Pretomanid against Mycobacterium tuberculosis. Adv Sci (Weinh), 2024, 11(39): e2400176. doi:10.1002/advs.202400176. |
| [28] | Wang X, Jowsey WJ, Cheung CY, et al. Whole genome CRISPRi screening identifies druggable vulnerabilities in an isoniazid resistant strain of Mycobacterium tuberculosis. Nat Commun, 2024, 15(1): 9791. doi:10.1038/s41467-024-54072-w. |
| [29] | Xu JT, Yu JF, Cheng T, et al. The T120P or M172V mutation on rv2172c confers high level para-aminosalicylic acid resistance in Mycobacterium tuberculosis Emerg Microbes Infect, 2024, 13(1): 2374030. doi:10.1080/22221751.2024.2374030. |
| [30] | Jia H, Chu H, Dai G, et al. Rv1258c acts as a drug efflux pump and growth controlling factor in Mycobacterium tuberculosis. Tuberculosis (Edinb), 2022, 133: 102172. doi:10.1016/j.tube.2022.102172. |
| [31] | Gao Y, Wei C, Luo L, et al. Membrane-assisted tariquidar access and binding mechanisms of human ATP-binding cassette transporter P-glycoprotein. Front Mol Biosci, 2024, 11: 1364494. doi:10.3389/fmolb.2024.1364494. |
| [32] | Wang S, Wang K, Song K, et al. Structures of the Mycobacterium tuberculosis efflux pump EfpA reveal the mechanisms of transport and inhibition. Nat Commun, 2024, 15(1): 7710. doi:10.1038/s41467-024-51948-9. |
| [33] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 4: Treatment and care. Geneva: World Health Organization, 2025. |
| [34] | Jeyasankar S, Kalapala YC, Sharma PR, et al. Antibacterial efficacy of mycobacteriophages against virulent Mycobacterium tuberculosis. BMC Microbiol, 2024, 24(1): 320. doi:10.1186/s12866-024-03474-3. |
| [35] | Singpanomchai N, Ratthawongjirakul P. The CRISPR-dCas9 interference system suppresses inhA gene expression in Mycobacterium smegmatis. Sci Rep, 2024, 14(1): 26116. doi:10.1038/s41598-024-77442-2. |
| [36] | Kim B, Kim J, Yoon SY, et al. HLA-DPB1*05:01 and HLA-A*11:01 Is Associated with Adverse Drug Reactions to Isoniazid and Rifampin for Treatment of Latent Tuberculosis Infection in South Korea. J Clin Med, 2024, 13(12): 3563. doi:10.3390/jcm13123563. |
| [37] | Yoon JG, Jang DG, Cho SG, et al. Synergistic toxicity with copper contributes to NAT2-associated isoniazid toxicity. Exp Mol Med, 2024, 56(3): 570-582. doi:10.1038/s12276-024-01172-8. |
| [38] | Ulanova V, Kivrane A, Viksna A, et al. Effect of NAT2, GSTM1 and CYP2E 1 genetic polymorphisms on plasma concentration of isoniazid and its metabolites in patients with tuberculosis, and the assessment of exposure-response relationships. Front Pharmacol, 2024, 15: 1332752. doi:10.3389/fphar.2024.1332752. |
| [39] | Lee SW, Chen PT, Liu CW, et al. Polymorphism of CYP3A4* 18 is associated with anti-tuberculosis drug-induced hepatotoxicity. Pharmacogenomics, 2024, 25(5/6): 241-247. doi:10.1080/14622416.2024.2346069. |
| [40] | Goletti D, Meintjes G, Andrade B B, et al. Insights from the 2024 WHO Global Tuberculosis Report-More Comprehensive Action, Innovation, and Investments required for achieving WHO End TB goals. Int J Infect Dis, 2025, 150: 107325. doi:10.1016/j.ijid.2024.107325. |
| [41] | Zohaib Ali M, Dutt TS, Macneill A, et al. A modified BPaL regimen for tuberculosis treatment replaces linezolid with inhaled spectinamides. Elife, 2024, 13: RP96190. doi:10.7554/eLife.96190. |
| [42] | Strydom N, Ernest JP, Imperial M, et al. Dose optimization of TBI-223 for enhanced therapeutic benefit compared to linezolid in antituberculosis regimen. Nat Commun, 2024, 15(1): 7311. doi:10.1038/s41467-024-50781-4. |
| [43] | Roberts LW, Malone KM, Hunt M, et al. MmpR5 protein truncation and bedaquiline resistance in Mycobacterium tuberculosis isolates from South Africa: a genomic analysis. Lancet Microbe, 2024, 5(8): 100847. doi:10.1016/S2666-5247(24)00053-3. |
| [1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 365-381. |
| [2] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 382-392. |
| [3] | Wei Daijue, Sun Jianjun, Chen Yan, Wang Shijun, Chang Yamei, Wei Nianhuan, Zhang Xin, Tong Chongxiang. Analysis of drug resistance of 2941 clinical isolates of Mycobacterium tuberculosis in Gansu Province [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 444-448. |
| [4] | Qi Dan, Wang Sheng, Liu Min, Gao Meiqin, Shi Feng, Li Bing, Bai Jun, Hao Ruixia, Wang Dong. Analysis of the etiological positive rate among pulmonary tuberculosis patients in designated tuberculosis hospitals in Ordos,Inner Mongolia Autonomous Region, 2015—2024 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(4): 456-463. |
| [5] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
| [6] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
| [7] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
| [8] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
| [9] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
| [10] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
| [11] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
| [12] | Liang Chen, Tang Shenjie, Lin Minggui. Research progress of comprehensive treatment for tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 70-80. |
| [13] | You Guoqing, Liu Wenguo, Feng Xin, Yu Min, Shi Lin, Hu Yan. Analysis of fluoroquinolones resistance in multidrug-resistant tuberculosis patients in Chongqing from 2020 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 475-479. |
| [14] | Yan Yaru, Xie Jianping. Research progress on the role of interleukin-1 in immune response and metabolic reprogramming of macrophages against Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 511-518. |
| [15] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公安网备11010202008787号
Total visitors: Visitors of today: Now online:
This work is licensed under Creative Commons Attribution 3.0 License.