| [1] |
Liu W, Wang Y, Zhao J, et al. Identification of Mycobacterium tuberculosis intracellular survival-related virulence factors via CRISPR-based eukaryotic-like secretory protein mutant library screen. Microbiol Spectr, 2025, 13(8): e0076725. doi:10.1128/spectrum.00767-25.
|
| [2] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024, 10(1): 22. doi:10.1038/s41572-024-00504-2.
|
| [3] |
张蓝月, 王颖超, 刘唯夷, 等. 硫醇乙酰基转移酶mshD对结核分枝杆菌生长和应对压力刺激的研究. 中国防痨杂志, 2024, 46(8):935-941. doi:10.19982/j.issn.1000-6621.20240184.
|
| [4] |
Sun MR, Xing JY, Li XT, et al. Recent advances in research on Mycobacterium tuberculosis virulence factors and their role in pathogenesis. J Microbiol Immunol Infect, 2025, 58(5): 497-507. doi:10.1016/j.jmii.2025.03.017.
|
| [5] |
Zhou Z, Wattiez R, Constant P, et al. Telacebec Interferes with Virulence Lipid Biosynthesis Protein Expression and Sensitizes to Other Antibiotics. Microorganisms, 2023, 11(10): 2469. doi:10.3390/microorganisms11102469.
|
| [6] |
Prozorov AA, Fedorova IA, Bekker OB, et al. The virulence factors of Mycobacterium tuberculosis: genetic control, new conceptions. Genetika, 2014, 50(8): 885-908.
pmid: 25731019
|
| [7] |
Boritsch EC, Frigui W, Cascioferro A, et al. pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol, 2016, 1: 15019. doi:10.1038/nmicrobiol.2015.19.
pmid: 27571976
|
| [8] |
董子璇, 孙俊杰, 代兴杨, 等. 猪链球菌SSU0468基因缺失株的构建及其对菌株形态和抗氧化能力的影响. 畜牧与兽医, 2025, 57(3): 111-117.
|
| [9] |
Liu S, Guan L, Peng C, et al. Mycobacterium tuberculosis suppresses host DNA repair to boost its intracellular survival. Cell Host Microbe, 2023, 31(11): 1820-1836. e10. doi:10.1016/j.chom.2023.09.010.
|
| [10] |
Xander C, Rajagopalan S, Jacobs WR Jr, et al. The SapM phosphatase can arrest phagosome maturation in an ESX-1 independent manner in Mycobacterium tuberculosis and BCG. Infect Immun, 2024, 92(7): e0021724. doi:10.1128/iai.00217-24.
|
| [11] |
Madduri BTSA, Bell SL. Bug in the code: TB blocks DNA repair. Cell Host Microbe, 2023, 31(11): 1769-1771. doi:10.1016/j.chom.2023.10.012.
pmid: 37944488
|
| [12] |
Verma S, Das M, Sharma RD, et al. A mitochondrial quality control mechanism reverses the phagosome maturation arrest caused by Mycobacterium tuberculosis. bioRxiv, 2023[2025-07-15]. doi:10.1101/2023.12.01.569475. Online ahead of print.
|
| [13] |
Subbarao S, Sanchez-Garrido J, Krishnan N, et al. Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Sci Rep, 2020, 10(1): 3709. doi:10.1038/s41598-020-60560-y.
|
| [14] |
Kumar R, Singh P, Kolloli A, et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci, 2019, 6: 105. doi:10.3389/fmolb.2019.00105.
|
| [15] |
王健宏, 徐兆坤, 李武. 炎性小体的激活机制及其在机体抗结核分枝杆菌中的作用研究进展. 畜牧兽医学报, 2020, 51(1):27-34. doi:10.11843/j.issn.0366-6964.2020.01.004.
|
| [16] |
Yi Z, Gao K, Li R, et al. Changed immune and miRNA response in RAW264.7 cells infected with cell wall deficient Mycobacterium tuberculosis. Int J Mol Med, 2018, 41(5): 2885-2892. doi:10.3892/ijmm.2018.3471.
|
| [17] |
张子扬. 结核分枝杆菌PknG对巨噬细胞极化的影响及其机制研究. 遵义: 遵义医科大学, 2022.
|