结核与肺部疾病杂志 ›› 2021, Vol. 2 ›› Issue (2): 102-107.doi: 10.3969/j.issn.2096-8493.2021.02.003
收稿日期:
2021-03-30
出版日期:
2021-06-30
发布日期:
2021-07-01
通信作者:
徐东群
E-mail:xudq@chinacdc.cn
基金资助:
Received:
2021-03-30
Online:
2021-06-30
Published:
2021-07-01
Contact:
XU Dong-qun
E-mail:xudq@chinacdc.cn
摘要:
新型冠状病毒肺炎仍在全球肆虐,呼吸道传染病传染性强,可经多种途径传播。人们长时间停留在室内环境中,在相对密闭的空间中,气溶胶传播的风险极大。作者对日常生活中不同环境呼吸道传染病气溶胶传播风险、影响因素及防控措施进行阐述,以期为新形势下中国呼吸道传染病防控提供借鉴。
吕科洋, 徐东群. 呼吸道传染病的气溶胶传播风险及防控建议[J]. 结核与肺部疾病杂志, 2021, 2(2): 102-107. doi: 10.3969/j.issn.2096-8493.2021.02.003
LYU Ke-yang, XU Dong-qun. The risk of aerosol transmission of respiratory infectious diseases and suggestions for prevention and control[J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 102-107. doi: 10.3969/j.issn.2096-8493.2021.02.003
[1] |
Kutter JS, Spronken MI, Fraaij PL, et al. Transmission routes of respiratory viruses among humans. Curr Opin Virol, 2018,28:142-151. doi: 10.1016/j.coviro.2018.01.001.
doi: 10.1016/j.coviro.2018.01.001 URL |
[2] |
Pavia A. One hundred years after the 1918 pandemic: new concepts for preparing for influenza pandemics. Curr Opin Infect Dis, 2019,32(4):365-371. doi: 10.1097/QCO.0000000000000564.
doi: 10.1097/QCO.0000000000000564 URL |
[3] |
Pulit-Penaloza JA, Belser JA, Tumpey TM, et al. Swine-Origin H1 Influenza Viruses Isolated from Humans Exhibit Sustained Infectivity in an Aerosol State. Appl Environ Microbiol, 2019,85(10):e00210-19. doi: 10.1128/AEM.00210-19.
doi: 10.1128/AEM.00210-19 |
[4] |
Fears AC, Klimstra WB, Duprex P, et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions. Emerg Infect Dis, 2020,26(9):2168-2171. doi: 10.3201/eid2609.201806.
doi: 10.3201/eid2609.201806 URL |
[5] |
Fennelly KP, Acuna-Villaorduna C, Jones-Lopez E, et al. Microbial Aerosols: New Diagnostic Specimens for Pulmonary Infections. Chest, 2020,157(3):540-546. doi: 10.1016/j.chest.2019.10.012.
doi: S0012-3692(19)34113-3 pmid: 31678308 |
[6] |
Yates TA, Khan PY, Knight GM, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis, 2016,16(2):227-238. doi: 10.1016/S1473-3099(15)00499-5.
doi: 10.1016/S1473-3099(15)00499-5 pmid: 26867464 |
[7] |
Dai H, Zhao B. Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simul. 2020: 1-7. doi: 10.1007/s12273-020-0703-5.
doi: 10.1007/s12273-020-0703-5 |
[8] |
Jones RM, Brosseau LM. Aerosol transmission of infectious disease. J Occup Environ Med, 2015,57(5):501-508. doi: 10.1097/JOM.0000000000000448.
doi: 10.1097/JOM.0000000000000448 URL |
[9] |
Tang S, Mao Y, Jones RM, et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ Int, 2020,144:106039. doi: 10.1016/j.envint.2020.106039.
doi: 10.1016/j.envint.2020.106039 URL |
[10] |
Peeples L. Face masks: what the data say. Nature, 2020,586(7828):186-189. doi: 10.1038/d41586-020-02801-8.
doi: 10.1038/d41586-020-02801-8 URL |
[11] |
Liu Y, Zhao B. Size-dependent filtration efficiencies of face masks and respirators for removing SARS-CoV-2-laden aerosols. Infect Control Hosp Epidemiol, 2020: 1-2. doi: 10.1017/ice.2020.366.
doi: 10.1017/ice.2020.366 |
[12] |
Lee BU. Minimum Sizes of Respiratory Particles Carrying SARS-CoV-2 and the Possibility of Aerosol Generation. Int J Environ Res Public Health, 2020,17(19):6960. doi: 10.3390/ijerph17196960.
doi: 10.3390/ijerph17196960 URL |
[13] |
Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020,581(7809):465-469. doi: 10.1038/s41586-020-2196-x.
doi: 10.1038/s41586-020-2196-x URL |
[14] |
Ciofi-Silva CL, Bruna CQM, Carmona RCC, et al. Norovirus recovery from floors and air after various decontamination protocols. J Hosp Infect, 2019,103(3):328-234. doi: 10.1016/j.jhin.2019.05.015.
doi: 10.1016/j.jhin.2019.05.015 |
[15] |
Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA, 2020,323(16):1610-1612. doi: 10.1001/jama.2020.3227.
doi: 10.1001/jama.2020.3227 URL |
[16] |
Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg Infect Dis, 2020,26(7):1583-1591. doi: 10.3201/eid2607.200885.
doi: 10.3201/eid2607.200885 URL |
[17] |
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 2020,582(7813):557-560. doi: 10.1038/s41586-020-2271-3.
doi: 10.1038/s41586-020-2271-3 URL |
[18] |
Lai ACK, Tan TF, Li WS, et al. Emission strength of airborne pathogens during toilet flushing. Indoor Air, 2018,28(1):73-79. doi: 10.1111/ina.12406.
doi: 10.1111/ina.12406 pmid: 28683156 |
[19] |
Knowlton SD, Boles CL, Perencevich EN, et al. Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrob Resist Infect Control, 2018,7:16. doi: 10.1186/s13756-018-0301-9.
doi: 10.1186/s13756-018-0301-9 URL |
[20] | 毛怡心, 丁培, 孙宗科. 马桶冲水行为与微生物气溶胶. 微生物学报, 2018,58(12):2070-2077. |
[21] |
Sperna Weiland NH, Traversari RAAL, Sinnige JS, et al. Influence of room ventilation settings on aerosol clearance and distribution. Br J Anaesth, 2021,126(1):e49-e52. doi: 10.1016/j.bja.2020.10.018.
doi: 10.1016/j.bja.2020.10.018 URL |
[22] |
Nguyen-Van-Tam JS, Killingley B, Enstone J, et al. Minimal transmission in an influenza A (H3N2) human challenge-transmission model within a controlled exposure environment. PLoS Pathog, 2020,16(7):e1008704. doi: 10.1371/journal.ppat.1008704.
doi: 10.1371/journal.ppat.1008704 URL |
[23] |
Tsui BCH, Pan S. Are aerosol-generating procedures safer in an airborne infection isolation room or operating room? Br J Anaesth, 2020,125(6):e485-e487. doi: 10.1016/j.bja.2020.09.011.
doi: 10.1016/j.bja.2020.09.011 URL |
[24] |
Sun K, Wang W, Gao L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 2021,371(6526):eabe2424. doi: 10.1126/science.abe2424.
doi: 10.1126/science.abe2424 URL |
[25] |
Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med, 2020,382(16):1564-1567. doi: 10.1056/NEJMc2004973.
doi: 10.1056/NEJMc2004973 URL |
[26] |
Hirose R, Ikegaya H, Naito Y, et al. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin Infect Dis, 2020: ciaa1517. doi: 10.1093/cid/ciaa1517.
doi: 10.1093/cid/ciaa1517 |
[27] |
Kang M, Wei J, Yuan J, et al. Probable Evidence of Fecal Aerosol Transmission of SARS-CoV-2 in a High-Rise Building. Ann Intern Med, 2020,173(12):974-980. doi: 10.7326/M20-0928.
doi: 10.7326/M20-0928 URL |
[28] |
Prussin AJ, 2nd, Torres PJ, Shimashita J, et al. Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. Microbiome, 2019,7(1):53. doi: 10.1186/s40168-019-0672-z.
doi: 10.1186/s40168-019-0672-z pmid: 30935423 |
[29] |
Noorimotlagh Z, Jaafarzadeh N, Martinez SS, et al. A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment. Environ Res, 2021,193:110612. doi: 10.1016/j.envres.2020.110612.
doi: 10.1016/j.envres.2020.110612 URL |
[30] |
Sharma A, Preece B, Swann H, et al. Structural stability of SARS-CoV-2 virus like particles degrades with temperature. Biochem Biophys Res Commun, 2021,534:343-346. doi: 10.1016/j.bbrc.2020.11.080.
doi: 10.1016/j.bbrc.2020.11.080 URL |
[31] |
Zhang N, Huang H, Duarte M, et al. Dynamic population flow based risk analysis of infectious disease propagation in a metropolis. Environ Int, 2016,94:369-379. doi: 10.1016/j.envint.2016.03.038.
doi: S0160-4120(16)30121-0 pmid: 27107973 |
[32] |
Zhang R, Li Y, Zhang AL, et al. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A, 2020,117(26):14857-14863. doi: 10.1073/pnas.2009637117.
doi: 10.1073/pnas.2009637117 URL |
[33] |
Anfinrud P, Stadnytskyi V, Bax CE, et al. Visualizing Speech-Generated Oral Fluid Droplets with Laser Light Scattering. N Engl J Med, 2020,382(21):2061-2063. doi: 10.1056/NEJMc2007800.
doi: 10.1056/NEJMc2007800 URL |
[34] |
Abkarian M, Mendez S, Xue N, et al. Speech can produce jet-like transport relevant to asymptomatic spreading of virus. Proc Natl Acad Sci U S A, 2020,117(41):25237-25245. doi: 10.1073/pnas.2012156117.
doi: 10.1073/pnas.2012156117 URL |
[35] |
Buonanno G, Stabile L, Morawska L. Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ Int, 2020,141:105794. doi: 10.1016/j.envint.2020.105794.
doi: S0160-4120(20)31280-0 pmid: 32416374 |
[36] |
Riediker M, Tsai DH. Estimation of Viral Aerosol Emissions From Simulated Individuals With Asymptomatic to Moderate Coronavirus Disease 2019. JAMA Netw Open, 2020,3(7):e2013807. doi: 10.1001/jamanetworkopen.2020.13807.
doi: 10.1001/jamanetworkopen.2020.13807 URL |
[37] |
Azuma K, Yanagi U, Kagi N, et al. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med, 2020,25(1):66. doi: 10.1186/s12199-020-00904-2.
doi: 10.1186/s12199-020-00904-2 URL |
[38] |
Asadi S, Gaaloul Ben Hnia N, Barre RS, et al. Influenza A virus is transmissible via aerosolized fomites. Nat Commun, 2020,11(1):4062. doi: 10.1038/s41467-020-17888-w.
doi: 10.1038/s41467-020-17888-w pmid: 32811826 |
[39] |
Ogbunugafor CB, Miller-Dickson MD, Meszaros VA, et al. Variation in microparasite free-living survival and indirect transmission can modulate the intensity of emerging outbreaks. Sci Rep, 2020,10(1):20786. doi: 10.1038/s41598-020-77048-4.
doi: 10.1038/s41598-020-77048-4 URL |
[40] |
Gao CX, Li Y, Wei J, et al. Multi-route respiratory infection: When a transmission route may dominate. Sci Total Environ, 2021,752:141856. doi: 10.1016/j.scitotenv.2020.141856.
doi: 10.1016/j.scitotenv.2020.141856 URL |
[41] |
Kulkarni H, Khandait H, Narlawar UW, et al. Independent association of meteorological characteristics with initial spread of Covid-19 in India. Sci Total Environ, 2021,764:142801. doi: 10.1016/j.scitotenv.2020.142801.
doi: 10.1016/j.scitotenv.2020.142801 URL |
[42] |
Crema E. The SARS-CoV-2 outbreak around the Amazon rainforest: The relevance of the airborne transmission. Sci Total Environ, 2021,759:144312. doi: 10.1016/j.scitotenv.2020.144312.
doi: 10.1016/j.scitotenv.2020.144312 URL |
[43] |
Kormuth KA, Lin K, Qian Z, et al. Environmental Persis-tence of Influenza Viruses Is Dependent upon Virus Type and Host Origin. mSphere, 2019,4(4):e00552-19. doi: 10.1128/mSphere.00552-19.
doi: 10.1128/mSphere.00552-19 |
[44] |
Coleman KK, Sigler WV. Airborne Influenza A Virus Exposure in an Elementary School. Sci Rep, 2020,10(1):1859. doi: 10.1038/s41598-020-58588-1.
doi: 10.1038/s41598-020-58588-1 URL |
[45] |
Marr LC, Tang JW, Van Mullekom J, et al. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J R Soc Interface, 2019,16(150):20180298. doi: 10.1098/rsif.2018.0298.
doi: 10.1098/rsif.2018.0298 URL |
[46] |
Islam N, Bukhari Q, Jameel Y, et al. COVID-19 and climatic factors: A global analysis. Environ Res, 2021,193:110355. doi: 10.1016/j.envres.2020.110355.
doi: 10.1016/j.envres.2020.110355 URL |
[47] |
Zhao L, Qi Y, Luzzatto-Fegiz P, et al. COVID-19: Effects of Environmental Conditions on the Propagation of Respiratory Droplets. Nano Lett, 2020,20(10):7744-7750. doi: 10.1021/acs.nanolett.0c03331.
doi: 10.1021/acs.nanolett.0c03331 URL |
[48] |
Yang XD, Li HL, Cao YE. Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location. Int J Environ Res Public Health, 2021,18(2):484. doi: 10.3390/ijerph18020484.
doi: 10.3390/ijerph18020484 URL |
[49] |
Welch D, Buonanno M, Grilj V, et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep, 2018,8(1):2752. doi: 10.1038/s41598-018-21058-w.
doi: 10.1038/s41598-018-21058-w URL |
[50] |
Zhao Y, Richardson B, Takle E, et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep, 2019,9(1):11755. doi: 10.1038/s41598-019-47788-z.
doi: 10.1038/s41598-019-47788-z URL |
[51] |
Shi KW, Huang YH, Quon H, et al. Quantifying the risk of indoor drainage system in multi-unit apartment building as a transmission route of SARS-CoV-2. Sci Total Environ, 2021,762:143056. doi: 10.1016/j.scitotenv.2020.143056.
doi: 10.1016/j.scitotenv.2020.143056 URL |
[52] |
Belosi F, Conte M, Gianelle V, et al. On the concentration of SARS-CoV-2 in outdoor air and the interaction with pre-existing atmospheric particles. Environ Res, 2021,193:110603. doi: 10.1016/j.envres.2020.110603.
doi: 10.1016/j.envres.2020.110603 URL |
[53] |
Schinkothe J, Scheinemann HA, Diederich S, et al. Airborne Disinfection by Dry Fogging Efficiently Inactivates Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacteria, and Bacterial Spores and Shows Limitations of Commercial Spore Carriers. Appl Environ Microbiol, 2021,87(3):e02019-20. doi: 10.1128/AEM.02019-20.
doi: 10.1128/AEM.02019-20 |
[54] |
Ma QX, Shan H, Zhang HL, et al. Potential utilities of mask-wearing and instant hand hygiene for fighting SARS-CoV-2. J Med Virol, 2020,92(9):1567-1571. doi: 10.1002/jmv.25805.
doi: 10.1002/jmv.25805 URL |
[55] |
Megahed NA, Ghoneim EM. Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ Res, 2021,193:110471. doi: 10.1016/j.envres.2020.110471.
doi: 10.1016/j.envres.2020.110471 URL |
[56] |
Morawska L, Tang J W, Bahnfleth W, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int, 2020,142:105832. doi: 10.1016/j.envint.2020.105832.
doi: S0160-4120(20)31787-6 pmid: 32521345 |
[57] |
Kudryashova OB, Muravlev EV, Antonnikova AA, et al. Propagation of viral bioaerosols indoors. PLoS One, 2021,16(1):e0244983. doi: 10.1371/journal.pone.0244983.
doi: 10.1371/journal.pone.0244983 URL |
[58] |
Wilson N, Corbett S, Tovey E. Airborne transmission of covid-19. BMJ, 2020,370:m3206. doi: 10.1136/bmj.m3206.
doi: 10.1136/bmj.m3206 |
[59] |
Adhikari U, Chabrelie A, Weir M, et al. A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols. Risk Anal, 2019,39(12):2608-2624. doi: 10.1111/risa.13389.
doi: 10.1111/risa.13389 |
[60] |
Buonanno G, Morawska L, Stabile L. Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environ Int, 2020,145:106112. doi: 10.1016/j.envint.2020.106112.
doi: S0160-4120(20)32067-5 pmid: 32927282 |
[61] |
Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2: Theoretical Considerations and Available Evidence. JAMA, 2020,324(5):441-442. doi: 10.1001/jama.2020.12458.
doi: 10.1001/jama.2020.12458 URL |
[62] |
Echternach M, Gantner S, Peters G, et al. Impulse Dispersion of Aerosols during Singing and Speaking: A Potential COVID-19 Transmission Pathway. Am J Respir Crit Care Med, 2020,202(11):1584-1587. doi: 10.1164/rccm.202009-3438LE.
doi: 10.1164/rccm.202009-3438LE URL |
[63] |
Hu J, Lei C, Chen Z, et al. Distribution of airborne SARS-CoV-2 and possible aerosol transmission in Wuhan hospitals, China. National Science Review, 2020,7(12):1865-1867. doi: 10.1093/nsr/nwaa250.
doi: 10.1093/nsr/nwaa250 URL |
[64] |
Meselson M. Droplets and Aerosols in the Transmission of SARS-CoV-2. N Engl J Med, 2020,382(21):2063. doi: 10.1056/NEJMc2009324.
doi: 10.1056/NEJMc2009324 URL |
[65] |
Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med, 2020,26(5):676-680. doi: 10.1038/s41591-020-0843-2.
doi: 10.1038/s41591-020-0843-2 URL |
[66] |
Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. The Lancet Respiratory Medicine, 2020,8(9):914-924. doi: 10.1016/s2213-2600(20)30323-4.
doi: 10.1016/s2213-2600(20)30323-4 URL |
[67] |
Wei J, Li Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control, 2016,44(9 Suppl):S102-108. doi: 10.1016/j.ajic.2016.06.003.
doi: 10.1016/j.ajic.2016.06.003 |
[68] |
Pasnick S, Carlos WG, Dela Cruz CS, et al. SARS-CoV-2 Transmission and the Risk of Aerosol-Generating Procedures. Am J Respir Crit Care Med, 2020,202(4):13-14. doi: 10.1164/rccm.2024P13.
doi: 10.1164/rccm.2024P13 URL |
[69] |
Fidler RL, Niedek CR, Teng JJ, et al. Aerosol Retention Characteristics of Barrier Devices. Anesthesiology, 2021,134(1):61-71. doi: 10.1097/ALN.0000000000003597.
doi: 10.1097/ALN.0000000000003597 URL |
[70] |
Leung NHL. Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol, 2021,22:1-18. doi: 10.1038/s41579-021-00535-6.
doi: 10.1038/s41579-021-00535-6 |
[71] |
Lai ACK, Nunayon SS, Tan TF, et al. A pilot study on the disinfection efficacy of localized UV on the flushing-generated spread of pathogens. J Hazard Mater, 2018,358:389-396. doi: 10.1016/j.jhazmat.2018.07.003.
doi: 10.1016/j.jhazmat.2018.07.003 URL |
[72] |
Nardell EA, Nathavitharana RR. Airborne Spread of SARS-CoV-2 and a Potential Role for Air Disinfection. JAMA, 2020,324(2):141-142. doi: 10.1001/jama.2020.7603.
doi: 10.1001/jama.2020.7603 pmid: 32478797 |
[73] |
Zhang J. Integrating IAQ control strategies to reduce the risk of asymptomatic SARS CoV-2 infections in classrooms and open plan offices. Science and Technology for the Built Environment, 2020,26(8):1013-1018. doi: 10.1080/23744731.2020.1794499.
doi: 10.1080/23744731.2020.1794499 URL |
[1] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[2] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[3] | 翟鹏勇, 张潇雅, 马文途, 苏凝, 赵素霞. 新型冠状病毒感染肺部影像学病灶延迟吸收相关因素分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 30-34. |
[4] | 艾姚含, 李鸣, 杜军, 张海雨, 张翠, 都小翠, 赵醒军. 呼吸康复训练对病毒感染后肺炎患者的疗效评估[J]. 结核与肺部疾病杂志, 2024, 5(S): 38-41. |
[5] | 卢昆云, 唐顺定, 吴蔚, 李玲, 杨蕊, 许琳. 2015—2022年云南省重点地区结核病患者发现情况分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 415-421. |
[6] | 陈伟, 孙慧娟, 赵雁林. 新时期我国结核病防治服务体系建设及展望[J]. 结核与肺部疾病杂志, 2024, 5(2): 95-100. |
[7] | 陈木兴, 范欣欣, 陈晓红, 林友飞, 黄明翔, 陈力舟, 吴迪. T淋巴细胞亚群检测在新型冠状病毒肺炎临床应用价值中的研究进展[J]. 结核与肺部疾病杂志, 2022, 3(4): 343-346. |
[8] | 吴静. “四轮驱动”后疫情时代慢性呼吸系统疾病防控提速发展[J]. 结核与肺部疾病杂志, 2021, 2(3): 202-204. |
[9] | 西日扎提·马木提, 麦维兰江·阿不力米提, 地尔木拉提·吐孙, 古力米娜·阿布力米提, 刘振江, 李冠贞, 力瓦依丁·阿尔斯拉, 黄飞, 赵雁林, 张丽杰, 欧喜超. 新型冠状病毒肺炎疫情对新疆维吾尔自治区喀什地区结核病防治工作的影响分析[J]. 结核与肺部疾病杂志, 2021, 2(3): 234-238. |
[10] | 姬新芬. 甘肃省平凉市外地输入性新型冠状病毒肺炎致一起家庭聚集性疫情的调查分析[J]. 结核与肺部疾病杂志, 2021, 2(1): 58-61. |
[11] | 黄进宝, 兰长青, 吕骁, 陈璐璐, 王新航, 陈玉榕, 黄明翔. 国外输入性新型冠状病毒肺炎23例诊疗经验分析[J]. 结核与肺部疾病杂志, 2020, 1(3): 213-219. |
[12] | 刘伯飞, 王芳, 刘伯霞, 马玉杰, 冯涛, 徐麟, 赵桂霞, 洪苑, 刘广天, 周攀, 曹相原. 84例新型冠状病毒肺炎患者CT表现与免疫学指标的变化特点分析[J]. 结核与肺部疾病杂志, 2020, 1(3): 220-225. |
[13] | 林明贵, 林金兰, 魏来, 张萍, 周碧琴, 张文砚, 华昊, 赵文静, 聂广孟, 苏立楠, 王小辉, 陈凯丽. 新型冠状病毒感染疫情期间以发热门诊为核心的综合医院防控策略[J]. 结核与肺部疾病杂志, 2020, 1(2): 109-111. |
[14] | 沈聪, 焦磊, 白璐, 张毅力, 郭佑民. 新型冠状病毒肺炎患者肺部CT病变质量及外周血淋巴细胞计数的动态演变分析[J]. 结核与肺部疾病杂志, 2020, 1(2): 126-130. |
[15] | 靳民路, 常蕴青, 齐凤鸣, 关晓岗, 郑冠华, 赵永华, 李震强, 李孝生, 王利芬, 王芳, 白印杰. 39例新型冠状病毒肺炎患者的临床特点及疗效分析[J]. 结核与肺部疾病杂志, 2020, 1(2): 131-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||