Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (2): 169-173.doi: 10.3969/j.issn.2096-8493.2021.02.014
• Original Articles • Previous Articles Next Articles
LIU Xin-yu, ZHANG Qian, SUN Qian()
Received:
2021-04-22
Online:
2021-06-30
Published:
2021-07-01
Contact:
SUN Qian
E-mail:anas2008@163.com
LIU Xin-yu, ZHANG Qian, SUN Qian. Analysis of drug resistance of multidrug-resistant Mycobacterium tuberculosis to multiple drugs in Changping District of Beijing[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(2): 169-173. doi: 10.3969/j.issn.2096-8493.2021.02.014
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2021.02.014
药品 | MIC值 范围 (mg/L) | MIC值菌株分布(株) | 临界 浓度 (mg/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.015 mg/L | 0.03 mg/L | 0.06 mg/L | 0.12 mg/L | 0.25 mg/L | 0.5 mg/L | 1 mg/L | 2 mg/L | 4 mg/L | 8 mg/L | |||
Lfx | 0.12~8 | 0 | 0 | 0 | 16 | 22 | 2 | 9 | 10 | 20 | 4 | 1 |
Mfx | 0.06~4 | 0 | 0 | 18 | 14 | 6 | 11 | 9 | 15 | 10 | 0 | 0.5 |
Bdq | 0.015~2 | 62 | 10 | 5 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0.25 |
Cfz | 0.06~4 | 0 | 0 | 57 | 15 | 3 | 5 | 0 | 2 | 1 | 0 | 1 |
Lzd | 0.03~2 | 0 | 9 | 7 | 31 | 26 | 5 | 1 | 4 | 0 | 0 | 1 |
Dlm | 0.015~1 | 78 | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0.125 |
药品 基因名称 | 引物序列(5'~3') | 片断长 度(bp) |
---|---|---|
Lfx/Mfx | ||
gyrA | 上游 TGACATCGAGCAGGAGATGC | 320 |
下游 GGGCTTCGGTGTACCTCATC | ||
gyrB | 上游 GTGGAAATATGTTGGCCGTC | 413 |
下游 GTCGTTGTGAACAACGCTGTG | ||
Lzd | ||
23S rRNA | 上游 GGTTGAAGACTGAGGGGATGAG | 2422 |
下游 CATCGGCGCTGGCAGGCTTAG | ||
rplC | 上游 GCTGCGGCTGGACGACTC | 420 |
下游 CTCTTGCGCAGCCATCACTTC | ||
rplD | 上游 CCGGGCGGATGGGCAATGACC | 936 |
下游 GGAATCCGGGCGCACCAAAAAC | ||
Bdq | ||
atpE | 上游 TGTACTTCAGCCAAGCGATGG | 454 |
下游 CCGTTGGGAATGAGGAAGTTG | ||
pepQ | 上游 ATCAATGCCCCCTGGAAC | 1371 |
下游 GCACGTTCTTCAACTTGGTG | ||
Cfz | ||
rv1979c | 上游 GCGGCGGAAATGAGTGT | 1647 |
下游 ATGCACGACGGCTTTATCA | ||
Bdq/Cfz | ||
rv0678 | 上游 TGCCTTCGGAACCAAAGAA | 795 |
下游 GACAACACGGTCACCTACAA | ||
Dlm | ||
fbiA | 上游 CGGTTCTGTTGTGGTTGGG | 1136 |
下游 CCGATGACGGGCAGGATC | ||
fbiB | 上游 GCCGCTGCTGATGACCGA | 1494 |
下游 TCGGGAGGTTGATGGTTGG | ||
fbiC | 上游 GTCCACCGCTCTGCCGAGTC | 2386 |
下游 GCCACCTTCGAGCATCACC | ||
fgd1 | 上游 TCGCGTTTATGGCATAGGAGT | 1090 |
下游 ACTTACCCGTCTGCGATTCTG | ||
ddn | 上游 CACCATCATCGAGCGGATTT | 765 |
下游 CAAGGGCGTGAAATGGGAT |
基因 碱基改变 | 氨基酸改变 | 药品 | 菌株数 | 突变率(%)a |
---|---|---|---|---|
gyrA | ||||
G262T | Gly88Cys | Lfx | 1 | 2.6(1/39) |
Mfx | 1 | 2.6(1/39) | ||
G265A | Asp89Asn | Lfx | 1 | 2.6(1/39) |
Mfx | 1 | 2.6(1/39) | ||
C269T | Ala90Val | Lfx | 8 | 20.5(8/39) |
Mfx | 6 | 15.4(6/39) | ||
T271C | Ser91Pro | Lfx | 1 | 2.6(1/39) |
Mfx | 1 | 2.6(1/39) | ||
G280T | Asp94Tyr | Lfx | 11 | 28.2(11/39) |
Mfx | 11 | 28.2(11/39) | ||
G280A | Asp94Asn | Lfx | 4 | 10.3(4/39) |
Mfx | 4 | 10.3(4/39) | ||
A281C | Asp94Ala | Lfx | 6 | 15.4(6/39) |
Mfx | 5 | 12.8(5/39) | ||
A281G | Asp94Gly | Lfx | 13 | 33.3(13/39) |
Mfx | 9 | 23.1(9/39) | ||
G284C | Ser95Thr | Lfx | 34 | 87.2(34/39) |
Mfx | 34 | 87.2(34/39) | ||
Rv0678 | ||||
A152G | Gln31Arg | Bdq | 1 | 1/2 |
Cfz | 1 | 1/3 | ||
T157C | Ser53Pro | Bdq | 1 | 1/2 |
Cfz | 1 | 1/3 | ||
rplC | ||||
T460C | Cys154Arg | Lzd | 2 | 2/4 |
ddn | ||||
G241A | Gly81Ser | Dlm | 2 | 2/4 |
fbiC | ||||
G952A | Val318Ile | Dlm | 1 | 1/4 |
[1] | World Health Organization. Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). Geneva: World Health Organization, 2018. |
[2] | Clinical and Laboratory Standards Institute. Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes; approved standard. Wayne: Clinical and Laboratory Standards Institute, 2018. |
[3] |
Wang G, Jiang G, Jing W, et al. Prevalence and molecular characterizations of seven additional drug resistance among multidrug-resistant tuberculosis in China: A subsequent study of a national survey. J Infect, 2021,82(3):371-377. doi: 10.1016/j.jinf.2021.02.004.
doi: 10.1016/j.jinf.2021.02.004 URL |
[4] |
Zhang Z, Li T, Qu G, et al. In vitro synergistic activity of clofazimine and other antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents, 2015,45(1):71-75. doi: 10.1016/j.ijantimicag.2014.09.012.
doi: 10.1016/j.ijantimicag.2014.09.012 URL |
[5] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC MGIT 960 system. J Antimicrob Chemother, 2016,71(6):1532-1539. doi: 10.1093/jac/dkw044.
doi: 10.1093/jac/dkw044 URL |
[6] |
Huo F, Luo J, Shi J, et al. A 10-Year Comparative Analysis Shows that Increasing Prevalence of Rifampin-Resistant Mycobacterium tuberculosis in China Is Associated with the Transmission of Strains Harboring Compensatory Mutations. Antimicrob Agents Chemother, 2018,62(4):e02303-17. doi: 10.1128/AAC.02303-17.
doi: 10.1128/AAC.02303-17 |
[7] |
Che Y, Song Q, Yang T, et al. Fluoroquinolone resistance in multidrug-resistant Mycobacterium tuberculosis independent of fluoroquinolone use. Eur Respir J, 2017,50(6):1701633. doi: 10.1183/13993003.01633-2017.
doi: 10.1183/13993003.01633-2017 URL |
[8] |
Hameed HMA, Tan Y, Islam MM, et al. Phenotypic and genotypic characterization of levofloxacin- and moxifloxacin-resistant Mycobacterium tuberculosis clinical isolates in southern China. J Thorac Dis, 2019,11(11):4613-4625. doi: 10.21037/jtd.2019.11.03.
doi: 10.21037/jtd.2019.11.03 pmid: 31903250 |
[9] |
Zhu C, Zhang Y, Shen Y, et al. Molecular characterization of fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates from Shanghai, China. Diagn Microbiol Infect Dis, 2012,73(3):260-263. doi: 10.1016/j.diagmicrobio.2012.03.025.
doi: 10.1016/j.diagmicrobio.2012.03.025 URL |
[10] |
Mokrousov I, Otten T, Manicheva O, et al. Molecular characterization of ofloxacin-resistant Mycobacterium tuberculosis strains from Russia. Antimicrob Agents Chemother, 2008,52(8):2937-2939. doi: 10.1128/AAC.00036-08.
doi: 10.1128/AAC.00036-08 URL |
[11] |
Chan RC, Hui M, Chan EW, et al. Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother, 2007,59(5):866-873. doi: 10.1093/jac/dkm054.
doi: 10.1093/jac/dkm054 URL |
[12] |
Umubyeyi AN, Rigouts L, Shamputa IC, et al. Limited fluoroquinolone resistance among Mycobacterium tuberculosis isolates from Rwanda: results of a national survey. J Antimicrob Chemother, 2007,59(5):1031-1033. doi: 10.1093/jac/dkm038.
doi: 10.1093/jac/dkm038 URL |
[13] |
Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014,9(7):e102135. doi: 10.1371/journal.pone.0102135.
doi: 10.1371/journal.pone.0102135 URL |
[14] |
孙晴, 黄海荣, 王桂荣. 贝达喹啉、氯法齐明和德拉马尼对常见致病性非结核分枝杆菌体外抑菌活性及耐药机制的研究进展. 中国防痨杂志, 2020,42(8):880-884. doi: 10.3969/j.issn.1000-6621.2020.08.019.
doi: 10.3969/j.issn.1000-6621.2020.08.019 |
[15] |
Beckert P, Hillemann D, Kohl TA, et al. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother, 2012,56(5):2743-2745. doi: 10.1128/AAC.06227-11.
doi: 10.1128/AAC.06227-11 URL |
[16] |
Liu Y, Matsumoto M, Ishida H, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb), 2018,111:20-30. doi: 10.1016/j.tube.2018.04.008.
doi: 10.1016/j.tube.2018.04.008 URL |
[17] |
Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006.
doi: S1472-9792(17)30271-8 pmid: 29523322 |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[5] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[6] | Cai Xiaoting, Du Yuhua, Wu Guifeng, He Liqian, Su Bihui, Gong Fang, Wang Ting, Lai Keng, Wu Xiaoying. Analysis of pulmonary tuberculosis registration and its characteristics in Guangzhou City from 2016 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 430-436. |
[7] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[8] | Zhao Wenli, Fang Zihao, Xu Yannan, Liu Suyang, Lin Jianxiong, Chen Zhuanghao, Fu Hui, Chen Ruiming, Chang Qiaocheng. Epidemiological characteristics of tuberculosis in Na’nao County, Guangdong Province from 2005 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 317-324. |
[9] | Su XingYue, Wang Beilei, Ma Xiang. Single nucleotide polymorphisms and related genes in Chinese children with type 2 inflammatory asthma [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 370-375. |
[10] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
[11] | Zhang Yajing, Ren Lijun, Wang Mingliang, Jiang Ying, Zhou Lin, Tang Guiqin. Analysis of the epidemic characteristics of pulmonary tuberculosis in Shijingshan District, Beijing from 2012 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 158-163. |
[12] | Liang Chen, Tang Shenjie, Lin Minggui. Research progress of comprehensive treatment for tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 70-80. |
[13] | You Guoqing, Liu Wenguo, Feng Xin, Yu Min, Shi Lin, Hu Yan. Analysis of fluoroquinolones resistance in multidrug-resistant tuberculosis patients in Chongqing from 2020 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 475-479. |
[14] | Yan Yaru, Xie Jianping. Research progress on the role of interleukin-1 in immune response and metabolic reprogramming of macrophages against Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 511-518. |
[15] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||