结核与肺部疾病杂志 ›› 2024, Vol. 5 ›› Issue (2): 179-185.doi: 10.19983/j.issn.2096-8493.20230118
• 综述 • 上一篇
收稿日期:
2023-09-27
出版日期:
2024-04-20
发布日期:
2024-04-11
通信作者:
谢俊刚
E-mail:xiejjgg@hotmail.com
Received:
2023-09-27
Online:
2024-04-20
Published:
2024-04-11
Contact:
Xie Jungang
E-mail:xiejjgg@hotmail.com
摘要:
慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)除了肺结构和功能受损外,局部炎症介质释放入血液中可引起全身炎症反应。全身炎症反应可进一步诱发或加重COPD 的肺外并发症,如心血管疾病(cardiovascular disease,CVD)、骨质疏松、焦虑和抑郁、感染等,其中临床上以CVD 尤为常见。COPD患者患CVD的风险增加,且并发CVD将导致生活质量下降、反复住院和远期预后变差。COPD和CVD是全球最重大的疾病负担,两者存在着共同的免疫细胞功能障碍。因此,了解两者共同的发病机制可能会有利于全面认识和正确治疗,从而减轻这种负担。作者就COPD和CVD的免疫学机制进行综述。
中图分类号:
朋毛措, 谢俊刚. 免疫细胞在慢性阻塞性肺疾病并发心血管疾病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 179-185. doi: 10.19983/j.issn.2096-8493.20230118
Peng Maocuo, Xie Jungang. Research progress on immune cells in chronic obstructive pulmonary disease complicated with cardiovascular disease[J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 179-185. doi: 10.19983/j.issn.2096-8493.20230118
[1] | Halpin DMG, Criner GJ, Papi A, et al. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2021, 203 (1): 24-36. doi:10.1164/rccm.202009-3533SO. |
[2] |
Curkendall SM, Deluise C, Jones JK, et al. Cardiovascular disease in patients with chronic obstructive pulmonary disease, Saskatchewan Canada cardiovascular disease in COPD patients. Annals of Epidemiology, 2006, 16 (1): 63-70.
doi: 10.1016/j.annepidem.2005.04.008 pmid: 16039877 |
[3] |
Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016, 138 (1): 16-27. doi:10.1016/j.jaci.2016.05.011.
pmid: 27373322 |
[4] |
Donaldson GC, Hurst JR, Smith CJ, et al. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest, 2010, 137 (5): 1091-1097. doi:10.1378/chest.09-2029.
pmid: 20022970 |
[5] |
Curkendall SM, Lanes S, De Luise C, et al. Chronic obstructive pulmonary disease severity and cardiovascular outcomes. Eur J Epidemiol, 2006, 21 (11): 803-813.
doi: 10.1007/s10654-006-9066-1 pmid: 17106760 |
[6] |
Barnes PJ. Inflammatory endotypes in COPD. Allergy, 2019, 74 (7): 1249-1256. doi:10.1111/all.13760.
pmid: 30834543 |
[7] | De Grove KC, Provoost S, Verhamme FM, et al. Characteri-zation and Quantification of Innate Lymphoid Cell Subsets in Human Lung. PLoS One, 2016, 11 (1): e0145961. doi:10.1371/journal.pone.0145961. |
[8] | Fani L, Van Der Willik KD, Bos D, et al. The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med, 2020, 17 (5): e1003115. doi:10.1371/journal.pmed.1003115. |
[9] | Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol, 2022, 22 (4): 251-265. doi:10.1038/s41577-021-00584-1. |
[10] | Bain WG, Tripathi A, Mandke P, et al. Low-Dose Oxygen Enhances Macrophage-Derived Bacterial Clearance following Cigarette Smoke Exposure. J Immunol Res, 2016, 2016: 1280347. doi:10.1155/2016/1280347 |
[11] |
To M, Takagi D, Akashi K, et al. Sputum plasminogen activator inhibitor-1 elevation by oxidative stress-dependent nuclear factor-κB activation in COPD. Chest, 2013, 144 (2): 515-521. doi:10.1378/chest.12-2381.
pmid: 23558707 |
[12] |
Eapen MS, Hansbro PM, Mcalinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep, 2017, 7 (1): 13392. doi:10.1038/s41598-017-13888-x.
pmid: 29042607 |
[13] | Wang L, Chen Q, Yu Q, et al. Cigarette smoke extract-treated airway epithelial cells-derived exosomes promote M1 macrophage polarization in chronic obstructive pulmonary disease. Int Immunopharmacol, 2021, 96: 107700. doi:10.1016/j.intimp.2021.107700. |
[14] | Abdolmaleki F, Gheibi Hayat SM, Bianconi V, et al. Atherosclerosis and immunity: A perspective. Trends Cardiovasc Med, 2019, 29 (6): 363-371. doi:10.1016/j.tcm.2018.09.017 |
[15] |
Hume DA. The Many Alternative Faces of Macrophage Activation. Front Immunol, 2015, 6: 370. doi:10.3389/fimmu.2015.00370.
pmid: 26257737 |
[16] |
Rahman K, Fisher EA. Insights From Pre-Clinical and Clinical Studies on the Role of Innate Inflammation in Atherosclerosis Regression. Front Cardiovasc Med, 2018, 5: 32. doi:10.3389/fcvm.2018.00032.
pmid: 29868610 |
[17] |
Barrett TJ. Macrophages in Atherosclerosis Regression. Arterioscler Thromb Vasc Biol, 2020, 40 (1): 20-33. doi:10.1161/ATVBAHA.119.312802.
pmid: 31722535 |
[18] | Tregay N, Begg M, Cahn A, et al. Use of autologous 99mTechnetium-labelled neutrophils to quantify lung neutrophil clearance in COPD. Thorax, 2019, 74 (7): 659-666. doi:10.1136/thoraxjnl-2018-212509 |
[19] | El-Gazzar AG, Kamel MH, Elbahnasy OKM, et al. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev Respir Med, 2020, 14 (1): 111-116. doi:10.1080/17476348.2019.1675517 |
[20] |
An Z, Li J, Yu J, et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages. Cell Cycle, 2019, 18 (21): 2928-2938. doi:10.1080/15384101.2019.1662678.
pmid: 31496351 |
[21] |
Dong T, Santos S, Yang Z, et al. Sputum and salivary protein biomarkers and point-of-care biosensors for the management of COPD. Analyst, 2020, 145 (5): 1583-1604. doi:10.1039/c9an01704f.
pmid: 31915768 |
[22] | Chi Y, Di Q, Han G, et al. Mir-29b mediates the regulation of Nrf 2 on airway epithelial remodeling and Th1/Th2 differentiation in COPD rats. Saudi J Biol Sci, 2019, 26 (8): 1915-1921. doi:10.1016/j.sjbs.2019.07.011. |
[23] | Jiang M, Liu H, Li Z, et al. ILC2s Induce Adaptive Th2-Type Immunity in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm, 2019, 2019: 3140183. doi:10.1155/2019/3140183. |
[24] |
Whitman SC, Ravisankar P, Elam H, et al. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/- mice. Am J Pathol, 2000, 157 (6): 1819-1824.
doi: 10.1016/s0002-9440(10)64820-1 pmid: 11106554 |
[25] |
Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest, 2004, 114 (3): 427-437.
doi: 10.1172/JCI20479 pmid: 15286809 |
[26] |
Cardilo-Reis L, Gruber S, Schreier SM, et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med, 2012, 4 (10): 1072-1086. doi:10.1002/emmm.201201374.
pmid: 23027612 |
[27] |
Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol, 2003, 163 (3): 1117-1125.
doi: 10.1016/S0002-9440(10)63471-2 pmid: 12937153 |
[28] | Roos AB, Sethi S, Nikota J, et al. IL-17A and the Promotion of Neutrophilia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2015, 192 (4): 428-437. doi:10.1164/rccm.201409-1689OC. |
[29] |
Erbel C, Akhavanpoor M, Okuyucu D, et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol, 2014, 193 (9): 4344-4355. doi:10.4049/jimmunol.1400181.
pmid: 25261478 |
[30] | Subramanian M, Thorp E, Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res, 2015, 116 (2): e13-e24. doi:10.1161/CIRCRESAHA.116.304794. |
[31] |
Williams M, Todd I, Fairclough LC. The role of CD8+T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflamm Res, 2021, 70 (1): 11-18. doi:10.1007/s00011-020-01408-z.
pmid: 33037881 |
[32] |
Hodge S, Hodge G, Nairn J, et al. Increased airway granzyme b and perforin in current and ex-smoking COPD subjects. COPD, 2006, 3 (4): 179-187.
pmid: 17361498 |
[33] | Schäfer S, Zernecke A. CD8+ T Cells in Atherosclerosis. Cells, 2020, 10 (1). doi:10.3390/cells10010037. |
[34] |
Kyaw T, Winship A, Tay C, et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation, 2013, 127 (9): 1028-1039. doi:10.1161/CIRCULATIONAHA.112.001347.
pmid: 23395974 |
[35] | Van Duijn J, Kritikou E, Benne N, et al. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc Res, 2019, 115 (4): 729-738. doi:10.1093/cvr/cvy261. |
[36] | Freeman CM, Curtis JL. Lung Dendritic Cells: Shaping Immune Responses throughout Chronic Obstructive Pulmonary Disease Progression. Am J Respir Cell Mol Biol, 2017, 56 (2): 152-159. doi:10.1165/rcmb.2016-0272TR. |
[37] | Shan M, Cheng HF, Song LZ, et al. Lung myeloid dendritic cells coordinately induce TH1 and TH 17 responses in human emphysema. Sci Transl Med, 2009, 1 (4): 4ra10. doi:10.1126/scitranlsmed.3000154. |
[38] | Mori M, Clausson CM, Sanden C, et al. Expansion of Phenotypically Altered Dendritic Cell Populations in the Small Airways and Alveolar Parenchyma in Patients with Chronic Obstructive Pulmonary Disease. J Innate Immun, 2022. doi:10.1159/000526080. |
[39] |
Paulson KE, Zhu SN, Chen M, et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res, 2010, 106 (2): 383-390. doi:10.1161/CIRCRESAHA.109.210781.
pmid: 19893012 |
[40] |
Ahrens S, Zelenay S, Sancho D, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity, 2012, 36 (4): 635-645. doi:10.1016/j.immuni.2012.03.008.
pmid: 22483800 |
[41] | Yan L, Wu X, Wu P, et al. Increased expression of Clec9A on cDC1s associated with cytotoxic CD8+ T cell response in COPD. Clin Immunol, 2022, 242: 109082. doi:10.1016/j.clim.2022.109082. |
[42] |
Haddad Y, Lahoute C, Clément M, et al. The Dendritic Cell Receptor DNGR-1 Promotes the Development of Atherosclerosis in Mice. Circ Res, 2017, 121 (3): 234-243. doi:10.1161/CIRCRESAHA.117.310960.
pmid: 28607102 |
[43] |
Brassington K, Selemidis S, Bozinovski S, et al. New frontiers in the treatment of comorbid cardiovascular disease in chronic obstructive pulmonary disease. Clin Sci (Lond), 2019, 133 (7): 885-904. doi:10.1042/CS20180316.
pmid: 30979844 |
[44] |
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J, 2016, 37 (27): 2129-2200. doi:10.1093/eurheartj/ehw128.
pmid: 27206819 |
[45] | Dransfield MT, Voelker H, Bhatt SP, et al. Metoprolol for the Prevention of Acute Exacerbations of COPD. N Engl J Med, 2019, 381 (24): 2304-2314. doi:10.1056/NEJMoa1908142. |
[46] |
Yang YL, Xiang ZJ, Yang JH, et al. Association of β-blocker use with survival and pulmonary function in patients with chronic obstructive pulmonary and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J, 2020, 41 (46): 4415-4422. doi:10.1093/eurheartj/ehaa793.
pmid: 33211823 |
[47] |
Nguyen LP, Omoluabi O, Parra S, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol, 2008, 38 (3): 256-262.
doi: 10.1165/rcmb.2007-0279RC URL |
[48] |
Lin R, Peng H, Nguyen LP, et al. Changes in beta 2-adrenoceptor and other signaling proteins produced by chronic admi-nistration of ‘beta-blockers’ in a murine asthma model. Pulm Pharmacol Ther, 2008, 21 (1): 115-124.
doi: 10.1016/j.pupt.2007.06.003 URL |
[49] |
Young RP, Hopkins R, Eaton TE. Pharmacological actions of statins: potential utility in COPD. Eur Respir Rev, 2009, 18 (114): 222-232. doi:10.1183/09059180.00005309.
pmid: 20956147 |
[50] | Kandelouei T, Abbasifard M, Imani D, et al. Effect of Statins on Serum level of hs-CRP and CRP in Patients with Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mediators Inflamm, 2022, 2022: 8732360. doi:10.1155/2022/8732360. |
[51] |
Arabi SM, Chambari M, Malek-Ahmadi M, et al. The effect of statin therapy in combination with ezetimibe on circulating C-reactive protein levels: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology, 2022, 30 (5): 1597-1615. doi:10.1007/s10787-022-01053-4
pmid: 35988111 |
[52] | Zeki A A, Franzi L, Last J, et al. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med, 2009, 180 (8): 731-740. doi:10.1164/rccm.200901-0018OC. |
[53] |
Lee JH, Lee DS, Kim EK, et al. Simvastatin inhibits cigarette smoking-induced emphysema and pulmonary hypertension in rat lungs. Am J Respir Crit Care Med, 2005, 172 (8): 987-993.
doi: 10.1164/rccm.200501-041OC URL |
[54] | Wright JL, Zhou S, Preobrazhenska O, et al. Statin reverses smoke-induced pulmonary hypertension and prevents emphysema but not airway remodeling. Am J Respir Crit Care Med, 2011, 183 (1): 50-58. doi:10.1164/rccm.201003-0399OC. |
[55] |
Neukamm A, Høiseth AD, Einvik G, et al. Rosuvastatin treatment in stable chronic obstructive pulmonary disease (RODEO): a randomized controlled trial. J Intern Med, 2015, 278 (1): 59-67. doi:10.1111/joim.12337.
pmid: 25495178 |
[56] | Schenk P, Spiel AO, Hüttinger F, et al. Can simvastatin reduce COPD exacerbations? A randomised double-blind controlled study. Eur Respir J, 2021, 58 (1). doi:10.1183/13993003.01798-2020. |
[57] |
Zhang W, Zhang Y, Li CW, et al. Effect of Statins on COPD: A Meta-Analysis of Randomized Controlled Trials. Chest, 2017, 152 (6): 1159-1168. doi:10.1016/j.chest.2017.08.015.
pmid: 28847550 |
[58] |
Shrikrishna D, Astin R, Kemp PR, et al. Renin-angiotensin system blockade: a novel therapeutic approach in chronic obstructive pulmonary disease. Clin Sci (Lond), 2012, 123 (8): 487-498. doi:10.1042/CS20120081.
pmid: 22757959 |
[59] |
Podowski M, Calvi C, Metzger S, et al. Angiotensin receptor blockade attenuates cigarette smoke-induced lung injury and rescues lung architecture in mice. J Clin Invest, 2012, 122 (1): 229-240. doi:10.1172/JCI46215.
pmid: 22182843 |
[60] | Ehteshami-Afshar S, Mooney L, Dewan P, et al. Clinical Characteristics and Outcomes of Patients With Heart Failure With Reduced Ejection Fraction and Chronic Obstructive Pulmonary Disease: Insights From PARADIGM-HF. J Am Heart Assoc, 2021, 10 (4): e019238. doi:10.1161/JAHA.120.019238. |
[61] |
Parikh MA, Aaron CP, Hoffman EA, et al. Angiotensin-Converting Inhibitors and Angiotensin Ⅱ Receptor Blockers and Longitudinal Change in Percent Emphysema on Computed Tomography. The Multi-Ethnic Study of Atherosclerosis Lung Study. Ann Am Thorac Soc, 2017, 14 (5): 649-658. doi:10.1513/AnnalsATS.201604-317OC.
pmid: 28207279 |
[62] | Duchez AC, Boudreau LH, Naika GS, et al. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-ⅡA. Proc Natl Acad Sci U S A, 2015, 112 (27): E3564-E3573. doi:10.1073/pnas.1507905112. |
[63] |
Zinellu A, Paliogiannis P, Sotgiu E, et al. Platelet Count and Platelet Indices in Patients with Stable and Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD, 2021, 18 (2): 231-245. doi:10.1080/15412555.2021.1898578.
pmid: 33929925 |
[64] |
Harrison MT, Short P, Williamson PA, et al. Thrombocytosis is associated with increased short and long term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax, 2014, 69 (7): 609-615. doi:10.1136/thoraxjnl-2013-203996.
pmid: 24743560 |
[65] | Ekström MP, Hermansson AB, Ström KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2013, 187 (7): 715-720. doi:10.1164/rccm.201208-1565OC. |
[1] | 曾文美, 吴苏龙, 刘灼帆, 袁茏, 陈碧琳, 荣艳. 便携式睡眠监测对阻塞性睡眠呼吸暂停低通气患者整夜病情评估及心血管疾病风险因素分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 1-7. |
[2] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[3] | 罗苑园. 吸入用乙酰半胱氨酸溶液治疗慢性阻塞性肺疾病的疗效评估[J]. 结核与肺部疾病杂志, 2024, 5(S): 1-3. |
[4] | 李蓉. 肿瘤微环境与免疫检查点抑制剂在晚期非小细胞肺癌治疗中的协同效应[J]. 结核与肺部疾病杂志, 2024, 5(S): 27-29. |
[5] | 董文竹, 唐静, 王聃, 徐李兵, 王艳, 肖贵宝. 母牛分枝杆菌菌苗联合常规抗结核治疗方案治疗HIV并发肺结核患者的临床效果分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 67-69. |
[6] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[7] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[8] | 杨红雨, 刘巧林, 康雄, 杨晓丽. 结核病与AIDS共病预后影响因素及综合防治策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 590-596. |
[9] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
[10] | 梁亚萍, 王卓, 刘家云, 朱蕾, 李静, 李蒙, 仵倩红. 国产结核分枝杆菌T细胞免疫反应检测试剂盒诊断结核病的临床试验研究[J]. 结核与肺部疾病杂志, 2024, 5(4): 289-293. |
[11] | 陈燕玲, 吴迪, 陈秀平, 林宇君, 陈晓红. 肺结核及并发肺外结核患者淋巴细胞亚群变化的研究及其临床意义[J]. 结核与肺部疾病杂志, 2024, 5(4): 294-304. |
[12] | 何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. |
[13] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[14] | 屈春瑾, 彭佳怡, 刘鈊逸, 肖冠琛, 顾芬, 李楠楠. 慢性阻塞性肺疾病患者延续性护理研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 254-259. |
[15] | 闫彦峰, 漆文霞, 崔永慧, 魏彩虹. 长链非编码RNA在慢性阻塞性肺疾病中的表达及其作用研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 172-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||