结核与肺部疾病杂志 ›› 2023, Vol. 4 ›› Issue (2): 158-163.doi: 10.19983/j.issn.2096-8493.20230036
收稿日期:
2023-03-02
出版日期:
2023-04-20
发布日期:
2023-04-07
通信作者:
唐昊,Email:基金资助:
Received:
2023-03-02
Online:
2023-04-20
Published:
2023-04-07
Contact:
Tang Hao, Email: Supported by:
摘要:
哮喘是以慢性气道炎症性改变和可逆性气流受限为主要特征的全球性呼吸道疾病,典型临床症状为呼吸困难、咳嗽、胸闷和喘息等。哮喘患者的气道重构及持续性气流受限可发生在患病早期,并与哮喘患者的症状加重及用药息息相关。因此,早期识别干预可能成为哮喘患者治疗的重要方式。高分辨率计算机断层扫描作为一种非侵入性技术,越来越多地用于检查哮喘气道重构的不同方面。笔者针对高分辨率计算机断层扫描对哮喘患者的气道重构的诊断,以及近些年气道重构机制研究进展进行综述。
中图分类号:
王忠照, 唐昊. 哮喘的气道重构机制研究进展[J]. 结核与肺部疾病杂志, 2023, 4(2): 158-163. doi: 10.19983/j.issn.2096-8493.20230036
Wang Zhongzhao, Tang Hao. Research progress of airway remodeling mechanism in asthma[J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 158-163. doi: 10.19983/j.issn.2096-8493.20230036
[1] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol, 2020, 42(1): 5-15. doi:10.1007/s00281-020-00785-1.
doi: 10.1007/s00281-020-00785-1 pmid: 32020334 |
[2] |
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol, 2019, 144(1):1-12. doi:10.1016/j.jaci.2019.05.031.
doi: S0091-6749(19)30753-5 pmid: 31277742 |
[3] |
Kole TM, Vanden Berghe E, Kraft M, et al. Predictors and associations of the persistent airflow limitation phenotype in asthma: a post-hoc analysis of the ATLANTIS study. Lancet Respir Med, 2023, 11(1): 55-64. doi:10.1016/S2213-2600(22)00185-0.
doi: 10.1016/S2213-2600(22)00185-0 URL |
[4] |
Boulet LP. Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med, 2018, 24(1):56-62. doi:10.1097/MCP.0000000000000441.
doi: 10.1097/MCP.0000000000000441 |
[5] |
Huang Y, Qiu C. Research advances in airway remodeling in asthma: a narrative review. Ann Transl Med, 2022, 10(18):1023-1023. doi:10.21037/atm-22-2835.
doi: 10.21037/atm-22-2835 pmid: 36267708 |
[6] |
Aoshiba K, Nagai A. Differences in airway remodeling between asthma and chronic obstructive pulmonary disease. Clin Rev Allergy Immunol, 2004, 27(1):35-43. doi:10.1385/CRIAI:27:1:035.
doi: 10.1385/CRIAI:27:1:035 URL |
[7] |
Gorska K, Korczynski P, Mierzejewski M, et al. Comparison of endobronchial ultrasound and high resolution computed tomography as tools for airway wall imaging in asthma and chronic obstructive pulmonary disease. Respir Med, 2016, 117:131-138. doi:10.1016/j.rmed.2016.06.011.
doi: 10.1016/j.rmed.2016.06.011 pmid: 27492523 |
[8] |
Hartley RA, Barker BL, Newby C, et al. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J Allergy Clin Immunol, 2016, 137(5):1413-1422.e12. doi:10.1016/j.jaci.2016.02.001.
doi: 10.1016/j.jaci.2016.02.001 pmid: 27006248 |
[9] |
Ash SY, Rahaghi FN, Come CE, et al. Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. Am J Respir Crit Care Med, 2018, 198(1):39-50. doi:10.1164/rccm.201712-2426OC.
doi: 10.1164/rccm.201712-2426OC |
[10] |
Kim S, Lee CH, Jin KN, et al. Severe Asthma Phenotypes Classified by Site of Airway Involvement and Remodeling via Chest CT Scan. J Investig Allergol Clin Immunol, 2018, 28(5):312-320. doi:10.18176/jiaci.0265.
doi: 10.18176/jiaci.0265 URL |
[11] |
Kraft M, Richardson M, Hallmark B, et al. The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respir Med, 2022, 10(7):661-668. doi:10.1016/S2213-2600(21)00536-1.
doi: 10.1016/S2213-2600(21)00536-1 pmid: 35247313 |
[12] |
Bourdin A, Bommart S, Marin G, et al. Obesity in women with asthma: Baseline disadvantage plus greater small-airway responsiveness. Allergy, 2023, 78(3): 780-790. doi:10.1111/all.15509.
doi: 10.1111/all.15509 URL |
[13] |
Nishimoto K, Karayama M, Inui N, et al. Relationship between fraction of exhaled nitric oxide and airway morphology assessed by three-dimensional CT analysis in asthma. Sci Rep, 2017, 7(1):10187. doi:10.1038/s41598-017-10504-w.
doi: 10.1038/s41598-017-10504-w pmid: 28860527 |
[14] |
Khalfaoui L, Symon FA, Couillard S, et al. Airway remodelling rather than cellular infiltration characterizes both type 2 cytokine biomarker-high and -low severe asthma. Allergy, 2022, 77(10):2974-2986. doi:10.1111/all.15376.
doi: 10.1111/all.15376 pmid: 35579040 |
[15] |
Elliot JG, Jones RL, Abramson MJ, et al. Distribution of airway smooth muscle remodelling in asthma: relation to airway inflammation. Respirology, 2015, 20(1):66-72. doi:10.1111/resp.12384.
doi: 10.1111/resp.12384 pmid: 25257809 |
[16] |
Hough KP, Curtiss ML, Blain TJ, et al. Airway Remodeling in Asthma. Front Med (Lausanne), 2020, 7:191. doi:10.3389/fmed.2020.00191.
doi: 10.3389/fmed.2020.00191 |
[17] |
Mauri P, Riccio AM, Rossi R, et al. Proteomics of bronchial biopsies: galectin-3 as a predictive biomarker of airway remo-delling modulation in omalizumab-treated severe asthma patients. Immunol Lett, 2014, 162(1 Pt A):2-10. doi:10.1016/j.imlet.2014.08.010.
doi: 10.1016/j.imlet.2014.08.010 URL |
[18] |
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int, 2014, 2014: 747584. doi:10.1155/2014/747584.
doi: 10.1155/2014/747584 |
[19] |
Mostaço-Guidolin LB, Osei ET, Ullah J, et al. Defective Fibrillar Collagen Organization by Fibroblasts Contributes to Airway Remodeling in Asthma. Am J Respir Crit Care Med, 2019, 200(4): 431-443. doi:10.1164/rccm.201810-1855OC.
doi: 10.1164/rccm.201810-1855OC URL |
[20] |
Ito JT, Lourenço JD, Righetti RF, et al. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells, 2019, 8(4):342. doi:10.3390/cells8040342.
doi: 10.3390/cells8040342 URL |
[21] |
Grainge C, Dennison P, Lau L, et al. Asthmatic and normal respiratory epithelial cells respond differently to mechanical apical stress. Am J Respir Crit Care Med, 2014, 190(4):477-480. doi:10.1164/rccm.201401-0107LE.
doi: 10.1164/rccm.201401-0107LE URL |
[22] |
Johansson K, McSorley HJ. Interleukin-33 in the developing lung-Roles in asthma and infection. Pediatr Allergy Immunol, 2019, 30(5): 503-510. doi:10.1111/pai.13040.
doi: 10.1111/pai.13040 |
[23] |
Smelter DF, Sathish V, Thompson MA, et al. Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. J Immunol, 2010, 185(5): 3035-3040. doi:10.4049/jimmunol.1000252.
doi: 10.4049/jimmunol.1000252 pmid: 20660708 |
[24] |
Shikotra A, Choy DF, Ohri CM, et al. Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol, 2012, 129(1): 104-11.e1-9. doi:10.1016/j.jaci.2011.08.031.
doi: 10.1016/j.jaci.2011.08.031 pmid: 21975173 |
[25] |
Li Y, Wang W, Lv Z, et al. Elevated Expression of IL-33 and TSLP in the Airways of Human Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. J Immunol, 2018, 200(7):2253-2262. doi:10.4049/jimmunol.1701455.
doi: 10.4049/jimmunol.1701455 pmid: 29453280 |
[26] |
Wang W, Li Y, Lv Z, et al. Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa. J Immunol, 2018, 201(8):2221-2231. doi:10.4049/jimmunol.1800709.
doi: 10.4049/jimmunol.1800709 pmid: 30185520 |
[27] |
Préfontaine D, Nadigel J, Chouiali F, et al. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol, 2010, 125(3):752-754. doi:10.1016/j.jaci.2009.12.935.
doi: 10.1016/j.jaci.2009.12.935 pmid: 20153038 |
[28] |
Zheng C, Qiu Y, Zeng Q, et al. Endothelial CD146 is required for in vitro tumor-induced angiogenesis: the role of a disulfide bond in signaling and dimerization. Int J Biochem Cell Biol, 2009, 41(11):2163-2172. doi:10.1016/j.biocel.2009.03.014.
doi: 10.1016/j.biocel.2009.03.014 pmid: 19782948 |
[29] |
Sun Z, Ji N, Ma Q, et al.Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol, 2020, 11:1598. doi:10.3389/fimmu.2020.01598.
doi: 10.3389/fimmu.2020.01598 pmid: 32793232 |
[30] |
Cristinziano L, Poto R, Criscuolo G, et al. IL-33 and Superantigenic Activation of Human Lung Mast Cells Induce the Release of Angiogenic and Lymphangiogenic Factors. Cells, 2021, 10(1):145. doi:10.3390/cells10010145.
doi: 10.3390/cells10010145 URL |
[31] |
Gambardella AR, Poto R, Tirelli V, et al. Differential Effects of Alarmins on Human and Mouse Basophils. Front Immunol, 2022, 13: 894163. doi:10.3389/fimmu.2022.894163.
doi: 10.3389/fimmu.2022.894163 URL |
[32] |
Varricchi G, Ferri S, Pepys J, et al. Biologics and airway remodeling in severe asthma. Allergy, 2022, 77(12):3538-3552. doi:10.1111/all.15473.
doi: 10.1111/all.15473 pmid: 35950646 |
[33] |
Choy DF, Hart KM, Borthwick LA, et al. TH2 and TH 17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med, 2015, 7(301): 301ra129. doi:10.1126/scitranslmed.aab3142.
doi: 10.1126/scitranslmed.aab3142 |
[34] |
Peters M, Köhler-Bachmann S, Lenz-Habijan T, et al. Influence of an Allergen-Specific Th 17 Response on Remodeling of the Airways. Am J Respir Cell Mol Biol, 2016, 54(3):350-358. doi:10.1165/rcmb.2014-0429OC.
doi: 10.1165/rcmb.2014-0429OC URL |
[35] |
Roth M, Zhong J, Zumkeller C, et al. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. PLoS One, 2013, 8(2):e56015. doi:10.1371/journal.pone.0056015.
doi: 10.1371/journal.pone.0056015 URL |
[36] |
Redhu NS, Shan L, Al-Subait D, et al. IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways. Allergy Asthma Clin Immunol, 2013, 9(1):41. doi:10.1186/1710-1492-9-41.
doi: 10.1186/1710-1492-9-41 pmid: 24499258 |
[37] |
Fang L, Wang X, Sun Q, et al. IgE Downregulates PTEN through MicroRNA-21-5p and Stimulates Airway Smooth Muscle Cell Remodeling. Int J Mol Sci, 2019, 20(4):875. doi:10.3390/ijms20040875.
doi: 10.3390/ijms20040875 URL |
[38] |
Balhara J, Shan L, Zhang J, et al. Pentraxin 3 deletion aggravates allergic inflammation through a TH17-dominant phenotype and enhanced CD 4 T-cell survival. J Allergy Clin Immunol, 2017, 139(3):950-963.e9. doi:10.1016/j.jaci.2016.04.063.
doi: S0091-6749(16)30702-3 pmid: 27567326 |
[39] |
Balhara J, Gounni AS. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol, 2012, 5(6):605-609. doi:10.1038/mi.2012.74.
doi: 10.1038/mi.2012.74 pmid: 22910216 |
[40] |
Flinkman E, Vähätalo I, Tuomisto LE, et al. Association Between Blood Eosinophils and Neutrophils With Clinical Features in Adult-Onset Asthma. J Allergy Clin Immunol Pract, 2022: S2213-2198(22)01251-X. doi:10.1016/j.jaip.2022.11.025.
doi: 10.1016/j.jaip.2022.11.025 |
[41] |
Song Y, Wang Z, Jiang J, et al. miR-181-5p attenuates neutrophilic inflammation in asthma by targeting DEK. Int Immunopharmacol, 2022, 112:109243. doi:10.1016/j.intimp.2022.109243.
doi: 10.1016/j.intimp.2022.109243 URL |
[42] |
Lai T, Su G, Wu D, et al. Myeloid-specific SIRT1 deletion exacerbates airway inflammatory response in a mouse model of allergic asthma. Aging (Albany NY), 2021, 13(11):15479-15490. doi:10.18632/aging.203104.
doi: 10.18632/aging.203104 |
[43] |
Khan MA, Assiri AM, Broering DC. Complement mediators: key regulators of airway tissue remodeling in asthma. J Transl Med, 2015, 13: 272. doi:10.1186/s12967-015-0565-2.
doi: 10.1186/s12967-015-0565-2 pmid: 26289385 |
[44] |
Rosethorne EM, Charlton SJ. Airway remodeling disease: primary human structural cells and phenotypic and pathway assays to identify targets with potential to prevent or reverse remodeling. J Exp Pharmacol, 2018, 10: 75-85. doi:10.2147/JEP.S159124.
doi: 10.2147/JEP.S159124 pmid: 30568517 |
[45] |
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol, 2016, 311(6): L1113-L1140. doi:10.1152/ajplung.00370.2016.
doi: 10.1152/ajplung.00370.2016 URL |
[46] |
Salter B, Pray C, Radford K, et al. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res, 2017, 18(1):156. doi:10.1186/s12931-017-0640-8.
doi: 10.1186/s12931-017-0640-8 URL |
[47] |
Riemma MA, Cerqua I, Romano B, et al. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. Br J Pharmacol, 2022, 179(8):1753-1768. doi:10.1111/bph.15754.
doi: 10.1111/bph.15754 URL |
[48] |
Ojiaku CA, Chung E, Parikh V, et al. Transforming Growth Factor-β1 Decreases β2-Agonist-induced Relaxation in Human Airway Smooth Muscle. Am J Respir Cell Mol Biol, 2019, 61(2):209-218. doi:10.1165/rcmb.2018-0301OC.
doi: 10.1165/rcmb.2018-0301OC URL |
[49] |
张玉, 布拉力·热西提, 许珺, 等. 血清IL-10、IL-22水平对老年重症支气管哮喘患者气道重构程度预测价值. 疑难病杂志, 2021, 20(12): 1197-1200. doi:10.3969/j.issn.1671-6450.2021.12.003.
doi: 10.3969/j.issn.1671-6450.2021.12.003 |
[1] | 朱衣兴, 常德. 慢性呼吸系统疾病管理的现状和展望[J]. 结核与肺部疾病杂志, 2024, 5(6): 567-572. |
[2] | 薛敏, 魏小玲, 刘苗, 王静, 张赟, 马香. 儿童哮喘起病年龄相关影响因素分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 468-475. |
[3] | 时旭, 陈如冲, 李靖. 哮喘表型和2型炎症哮喘研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 489-494. |
[4] | 苏醒岳, 王蓓蕾, 马香. 中国儿童2型炎症型哮喘单核苷酸多态性和相关基因关系的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 370-375. |
[5] | 尼尔佳玛丽·木塔力甫, 玛力亚·牙生, 克丽别娜·吐尔逊. 支气管哮喘气道炎症表型临床特征及靶向治疗研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 506-510. |
[6] | 郭晶, 娄南南, 李佳琳, 张华, 马香. 胸闷变异性哮喘与典型哮喘的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 413-418. |
[7] | 孟玮玮, 曾慧卉, 陈燕. 吸气峰流速测定在慢性气道疾病中应用研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 391-396. |
[8] | 李锡容, 谢佳星. 开展哮喘的多学科管理 提高哮喘的诊治水平[J]. 结核与肺部疾病杂志, 2023, 4(2): 93-97. |
[9] | 胡亭亭, 常春. 神经酰胺及神经酰胺合成酶在哮喘中的作用[J]. 结核与肺部疾病杂志, 2023, 4(2): 164-168. |
[10] | 黄俊文, 陈颖, 蔡绍曦, 赵海金. 靶向哮喘气道上皮研究进展[J]. 结核与肺部疾病杂志, 2023, 4(2): 153-157. |
[11] | 闫金燕, 李小敏, 马香. 儿童哮喘与百日咳关系机制的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(1): 78-84. |
[12] | 娄南南, 郭晶, 马香, 盖中涛. 咳嗽变异性哮喘病理机制及治疗的研究进展[J]. 结核与肺部疾病杂志, 2022, 3(6): 521-525. |
[13] | 林慧敏, 符昱, 方章福, 谢佳星. 嗜酸性粒细胞哮喘的研究进展[J]. 结核与肺部疾病杂志, 2022, 3(4): 328-333. |
[14] | 林慧敏, 谢佳星. 重症哮喘应用贝那利珠单抗治疗二例[J]. 结核与肺部疾病杂志, 2022, 3(1): 80-84. |
[15] | 周洁, 祁勍, 陈龙, 武蕊, 史光烁, 杜鹤, 刘亚欣, 熊雷, 吴志乐, 吴国霞. 内科医师对全球哮喘防治倡议知晓情况调查[J]. 结核与肺部疾病杂志, 2021, 2(2): 189-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||