[1] |
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention(2023 Update). Fontana:Global Initiative for Asthma, 2023.
|
[2] |
钱雪娇, 蒋萍. 2型炎症型哮喘发病机制. 中华临床免疫和变态反应杂志, 2022, 16(6):629-635. doi:10.3969/j.issn.1673-8705.2022.06.011.
|
[3] |
Santini G, Mores N, Malerba M, et al. Dupilumab for the treatment of asthma. Expert Opin Investig Drugs, 2017, 26(3):357-366. doi:10.1080/13543784.2017.1282458.
|
[4] |
杜文, 刘春涛. 支气管哮喘的表型. 中华临床免疫和变态反应杂志, 2022, 16(3):287-291. doi:10.3969/j.issn.1673-8705.2022.03.011.
|
[5] |
Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol, 2019, 56(2):219-233. doi:10.1007/s12016-018-8712-1.
|
[6] |
Bousquet J, Hellings PW, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology. J Allergy Clin Immunol, 2019, 143(3):864-879. doi:10.1016/j.jaci.2018.08.049.
pmid: 30273709
|
[7] |
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention(2019 Update). Fontana:Global Initiative for Asthma, 2019.
|
[8] |
Canonica GW, Blasi F, Crimi N, et al. Defining type 2 asthma and patients eligible for dupilumab in Italy: a biomarker-based analysis. Clin Mol Allergy, 2021, 19(1):5. doi:10.1186/s12948-021-00146-9.
|
[9] |
Deng Z, Jin M, Ou C, et al. Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies. Chin Med J (Engl), 2023, 136(2):230-232. doi:10.1097/CM9.0000000000002556.
|
[10] |
Rackemann FM. A working classification of asthma. Am J Med, 1947, 3(5):601-606. doi:10.1016/0002-9343(47)90204-0.
pmid: 20269240
|
[11] |
Wenzel SE, Szefler SJ, Leung DY, et al. Bronchoscopic evalua-tion of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med, 1997, 156(3 Pt 1): 737-743. doi:10.1164/ajrccm.156.3.9610046.
|
[12] |
Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet, 2006, 368(9537): 804-813. doi:10.1016/S0140-6736(06)69290-8.
pmid: 16935691
|
[13] |
Moore WC, Meyers DA, Wenzel SE, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med, 2010, 181(4):315-323. doi:10.1164/rccm.200906-0896OC.
|
[14] |
Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med, 2017, 377(10):965-976. doi:10.1056/NEJMra1608969.
|
[15] |
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol, 2019, 144(1):1-12. doi:10.1016/j.jaci.2019.05.031.
pmid: 31277742
|
[16] |
Cloutier MM, Dixon AE, Krishnan JA, et al. Managing Asthma in Adolescents and Adults: 2020 Asthma Guideline Update From the National Asthma Education and Prevention Program. JAMA, 2020, 324(22):2301-2317. doi:10.1001/jama.2020.21974.
pmid: 33270095
|
[17] |
中华医学会变态反应学分会. 2型炎症性疾病机制及靶向治疗专家共识. 中华医学杂志, 2022, 102(42): 3349-3373. doi:10.3760/cma.j.cn112137-20220628-01431.
|
[18] |
Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol, 2023, 14:1149203. doi:10.3389/fimmu.2023.1149203.
|
[19] |
Han YY, Zhang X, Wang J, et al. Multidimensional Assessment of Asthma Identifies Clinically Relevant Phenotype Overlap: A Cross-Sectional Study. J Allergy Clin Immunol Pract, 2021, 9(1):349-362.e18. doi:10.1016/j.jaip.2020.07.048.
pmid: 32791248
|
[20] |
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med, 2012, 18(5):716-725. doi:10.1038/nm.2678.
pmid: 22561835
|
[21] |
Israel E, Reddel HK. Severe and Difficult-to-Treat Asthma in Adults. N Engl J Med, 2017, 377(10):965-976. doi:10.1056/NEJMra1608969.
|
[22] |
Fitzsimmons CM, Falcone FH, Dunne DW, et al. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol, 2014, 5:61. doi:10.3389/fimmu.2014.00061.
pmid: 24592267
|
[23] |
Busse WW, Kraft M, Rabe KF, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur Respir J, 2021, 58(2):2003393. doi:10.1183/13993003.03393-2020.
|
[24] |
Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med, 2013, 19(8):977-979. doi:10.1038/nm.3300.
pmid: 23921745
|
[25] |
Akar-Ghibril N, Casale T, Custovic A, et al. Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract, 2020, 8(2):429-440. doi:10.1016/j.jaip.2019.11.008.
pmid: 32037107
|
[26] |
Hazan G, Eubanks A, Gierasch C, et al. Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. J Immunol, 2022, 208(6):1467-1482. doi:10.2147/JIR.S269297.
pmid: 35173037
|
[27] |
Runnstrom M, Pitner H, Xu J, et al. Utilizing Predictive Inflammatory Markers for Guiding the Use of Biologicals in Severe Asthma. J Inflamm Res, 2022, 15:241-249. doi:10.2147/JIR.S269297.
pmid: 35068937
|
[28] |
中国医药教育协会慢性气道疾病专业委员会, 中国哮喘联盟. 呼出气一氧化氮检测及其在气道疾病诊治中应用的中国专家共识. 中华医学杂志, 2021, 101(38): 3092-3114. doi:10.3760/cma.j.cn112137-20210210-00408.
|
[29] |
Nair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asth ma with sputum eosinophilia. N Engl J Med, 2009, 360(10):985-993. doi:10.1056/NEJMoa0805435.
|
[30] |
Escamilla-Gil JM, Fernandez-Nieto M, Acevedo N. Understanding the Cellular Sources of the Fractional Exhaled Nitric Oxide (FeNO) and Its Role as a Biomarker of Type 2 Inflammation in Asthma. Biomed Res Int, 2022, 2022:5753524. doi:10.1155/2022/5753524.
|
[31] |
Vitte J, Vibhushan S, Bratti M, et al. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med Princ Pract, 2022, 31(6): 501-515. doi:10.1159/000527481.
|
[32] |
Habib N, Pasha MA, Tang DD. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells, 2022, 11(17):2764. doi:10.3390/cells11172764.
|
[33] |
Zhang Q, Fu X, Wang C, et al. Severe eosinophilic asthma in Chinese C-BIOPRED asthma cohort. Clin Transl Med, 2022, 12(2): e710. doi:10.1002/ctm2.710.
pmid: 35184418
|
[34] |
McGregor MC, Krings JG, Nair P, et al. Role of Biologics in Asthma. Am J Respir Crit Care Med, 2019, 199(4):433-445. doi:10.1164/rccm.201810-1944CI.
|
[35] |
Fajt ML, Wenzel SE. Development of New Therapies for Severe Asthma. Allergy Asthma Immunol Res, 2017, 9(1):3-14. doi:10.4168/aair.2017.9.1.3.
|
[36] |
Gandhi NA, Bennett BL, Graham NM, et al. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov, 2016, 15(1):35-50. doi:10.1038/nrd4624.
pmid: 26471366
|
[37] |
Vatrella A, Maglio A, Pellegrino S, et al. Phenotyping severe asthma: a rationale for biologic therapy. Expert Rev Precis Med Drug Dev, 2020, 5(4): 265-274. doi:10.1080/23808993.2020.1776106.
|
[38] |
Paul WE, Zhu J. How are TH2-type immune responses initiated and amplified. Nat Rev Immunol, 2010, 10(4):225-235. doi:10.1038/nri2735.
|
[39] |
Maison N, Omony J, Illi S, et al. T2-high asthma phenotypes across lifespan. Eur Respir J, 2022, 60(3):2102288. doi:10.1183/13993003.02288-2021.
|
[40] |
Popovic'-Grle S, Štajduhar A, Lampalo M, et al. Biomarkers in Different Asthma Phenotypes. Genes (Basel), 2021, 12(6):801. doi:10.3390/genes12060801.
|
[41] |
Pembrey L, Barreto ML, Douwes J, et al. Understanding asthma phenotypes: the World Asthma Phenotypes (WASP) international collaboration. ERJ Open Res, 2018, 4(3):00013-2018. doi:10.1183/23120541.00013-2018.
|