结核与肺部疾病杂志 ›› 2022, Vol. 3 ›› Issue (1): 60-64.doi: 10.19983/j.issn.2096-8493.20210157
收稿日期:
2021-12-26
出版日期:
2022-02-20
发布日期:
2022-02-24
通信作者:
陈燕
E-mail:chenyan99727@csu.edu.cn
基金资助:
Received:
2021-12-26
Online:
2022-02-20
Published:
2022-02-24
Contact:
CHEN Yan
E-mail:chenyan99727@csu.edu.cn
Supported by:
摘要:
慢性阻塞性肺疾病(COPD)是一种常见的慢性呼吸系统疾病,患病率与病亡率均较高。肺气肿是COPD主要的病理表现之一,其发生发展与蛋白酶-抗蛋白酶失衡、氧化应激、细胞炎症、细胞凋亡等有关。但是,目前关于肺气肿的发病机制及病程进展的原因尚未完全阐明,建立疾病动物模型为进一步了解其生理病理机制提供了有效且有实践意义的实验平台。本研究对既往已建立的肺气肿动物模型方法及相关进展进行综述。
中图分类号:
罗丽娟, 陈燕. 肺气肿动物模型研究进展[J]. 结核与肺部疾病杂志, 2022, 3(1): 60-64. doi: 10.19983/j.issn.2096-8493.20210157
LUO Li-juan, CHEN Yan. Research progress of animal models of emphysema[J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 60-64. doi: 10.19983/j.issn.2096-8493.20210157
表1
各种动物模型的优缺点
建模方法 | 优点 | 缺点 |
---|---|---|
香烟烟雾暴露诱发的肺气肿模型 | 与人类吸烟诱导的发病过程相似,产生类似于人类的生理变化,包括肺气肿、气流阻塞和肺动态顺应性降低等;低成本 | 建模周期相对较长 |
香烟烟雾提取物腹腔注射诱导的肺气肿模型 | 操作简单,建模周期短,低成本 | 与人类肺气肿的发展过程不完全一致 |
弹性蛋白酶诱导的肺气肿模型 | 操作简单,建模周期短,快速起病,低成本 | 弹性蛋白诱导的急性起病与人类肺气肿慢性进展不完全一致 |
化学物质刺激诱导的肺气肿模型 | 操作简单,建模周期短,低成本 | 与人类肺气肿的发展过程不完全一致 |
与基因相关诱导的肺气肿模型 | 阐明各种不同的基因在肺气肿发病机制中的作用 | 技术要求及成本较高 |
[1] |
王晓娟, 方向阳. 慢性阻塞性肺疾病全球倡议2019:慢性阻塞性肺疾病诊断、治疗与预防全球策略解读. 中国全科医学, 2019, 22(18):2141-2149. doi: 10.12114/j.issn.1007-9572.2019.00.064.
doi: 10.12114/j.issn.1007-9572.2019.00.064 |
[2] |
李思其, 高兴林. 《慢性阻塞性肺疾病全球倡议》2021年版更新解读. 临床药物治疗杂志, 2021, 19(5):36-42. doi: 10.3969/j.issn.1672-3384.2021.05.008.
doi: 10.3969/j.issn.1672-3384.2021.05.008 |
[3] |
丁明静, 徐桂华, 高笑宇, 等. 慢性阻塞性肺疾病发病机制研究进展. 世界最新医学信息文摘(连续型电子期刊), 2019, 19(22):118-123. doi: 10.19613/j.cnki.1671-3141.2019.22.077.
doi: 10.19613/j.cnki.1671-3141.2019.22.077 |
[4] |
He X, Li T, Kang N, et al. The protective effect of PRMT6 overexpression on cigarette smoke extract-induced murine emphysema model. Int J Chron Obstruct Pulmon Dis, 2017, 12:3245-3254. doi: 10.2147/COPD.S144881.
doi: 10.2147/COPD.S144881 URL |
[5] |
Mansouri Z, Dianat M, Radan M, et al. Ellagic Acid Ameliorates Lung Inflammation and Heart Oxidative Stress in Elastase-Induced Emphysema Model in Rat. Inflammation, 2020, 43(3):1143-1156. doi: 10.1007/s10753-020-01201-4.
doi: 10.1007/s10753-020-01201-4 pmid: 32103438 |
[6] |
冯志军, 路武杰, 滕伟, 等. 纤维支气管镜肺减容术治疗绵羊肺气肿模型的实验研究. 重庆医科大学学报, 2014, 39(9):1236-1239. doi: 10.13406/j.cnki.cyxb.000014.
doi: 10.13406/j.cnki.cyxb.000014 |
[7] |
刘迪, 张洪春. 慢性阻塞性肺疾病动物模型的造模方法. 中国比较医学杂志, 2020, 30(3):108-114. doi: 10.3969/j.issn.1671-7856.2020.03.019.
doi: 10.3969/j.issn.1671-7856.2020.03.019 |
[8] |
Goldklang MP, Tekabe Y, Zelonina T, et al. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo. Am J Respir Cell Mol Biol, 2016, 55(6):848-857. doi: 10.1165/rcmb.2015-0407OC.
doi: 10.1165/rcmb.2015-0407OC URL |
[9] |
Paul T, Blanco I, Aguilar D, et al. Therapeutic effects of soluble guanylate cyclase stimulation on pulmonary hemodynamics and emphysema development in guinea pigs chronically exposed to cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 2019, 317(2):L222-L234. doi: 10.1152/ajplung.00399.2018.
doi: 10.1152/ajplung.00399.2018 URL |
[10] |
Cui W, Zhang Z, Zhang P, et al. Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med, 2018, 22(7):3514-3525. doi: 10.1111/jcmm.13628.
doi: 10.1111/jcmm.13628 URL |
[11] |
Zeng H, Li T, He X, et al. Oxidative stress mediates the apoptosis and epigenetic modification of the Bcl-2 promoter via DNMT1 in a cigarette smoke-induced emphysema model. Respir Res, 2020, 21(1):229. doi: 10.1186/s12931-020-01495-w.
doi: 10.1186/s12931-020-01495-w URL |
[12] |
Cui L, Li H, Xie M, et al. Relationship Between Proteinase with a Disintegrin and a Metalloproteinase Domain-9 (ADAM9), Inflammation, Airway Remodeling, and Emphysema in COPD Patients. Int J Chron Obstruct Pulmon Dis, 2020, 15:3335-3346.
doi: 10.2147/COPD.S276171 URL |
[13] |
Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis, 2018, 13:3341-3348. doi: 10.2147/COPD.S176122.
doi: 10.2147/COPD.S176122 URL |
[14] |
Pennisi E. Genomics. Sequence tells mouse, human genome secrets. Science, 2002, 298(5600):1863-1865. doi: 10.1126/science.298.5600.1863.
doi: 10.1126/science.298.5600.1863 URL |
[15] |
Kratzer A, Salys J, Nold-Petry C, et al. Role of IL-18 in second-hand smoke-induced emphysema. Am J Respir Cell Mol Biol, 2013, 48(6):725-732. doi: 10.1165/rcmb.2012-0173OC.
doi: 10.1165/rcmb.2012-0173OC URL |
[16] |
Wright JL, Churg A. Animal models of cigarette smoke-induced COPD. Chest, 2002, 122(6 Suppl):301S-306S. doi: 10.1378/chest.122.6_suppl.301s.
doi: 10.1378/chest.122.6_suppl.301s URL |
[17] |
Stevenson CS, Docx C, Webster R, et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol, 2007, 293(5):L1183-1193. doi: 10.1152/ajplung.00105.2007.
doi: 10.1152/ajplung.00105.2007 URL |
[18] |
Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, 2008, 295(1):L1-15. doi: 10.1152/ajplung.90200.2008.
doi: 10.1152/ajplung.90200.2008 URL |
[19] |
Golovatch P, Mercer BA, Lemaître V, et al. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp Lung Res, 2009, 35(8):631-645. doi: 10.3109/01902140902822304.
doi: 10.3109/01902140902822304 pmid: 19895319 |
[20] |
Domínguez-Fandos D, Peinado VI, Puig-Pey R, et al. Pulmonary inflammatory reaction and structural changes induced by cigarette smoke exposure in the Guinea pig. COPD, 2012, 9(5):473-484. doi: 10.3109/15412555.2012.691999.
doi: 10.3109/15412555.2012.691999 pmid: 22708688 |
[21] |
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med, 2017, 195(5):557-582. doi: 10.1164/rccm.201701-0218PP.
doi: 10.1164/rccm.201701-0218PP URL |
[22] |
John G, Kohse K, Orasche J, et al. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond), 2014, 126(3):207-221. doi: 10.1042/CS20130117.
doi: 10.1042/CS20130117 URL |
[23] |
Lee J, Machin M, Russell KE, et al. Corticosteroid modulation of immunoglobulin expression and B-cell function in COPD. FASEB J, 2016, 30(5):2014-2026. doi: 10.1096/fj.201500135.
doi: 10.1096/fj.201500135 URL |
[24] |
Le Y, Cao W, Zhou L, et al. Infection of Mycobacterium tuberculosis Promotes Both M1/M2 Polarization and MMP Production in Cigarette Smoke-Exposed Macrophages. Front Immunol, 2020, 11:1902. doi: 10.3389/fimmu.2020.01902.
doi: 10.3389/fimmu.2020.01902 URL |
[25] |
He ZH, Chen P, Chen Y, et al. Comparison between cigarette smoke-induced emphysema and cigarette smoke extract-induced emphysema. Tob Induc Dis, 2015, 13(1):6. doi: 10.1186/s12971-015-0033-z.
doi: 10.1186/s12971-015-0033-z URL |
[26] |
Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc, 2006, 3(8):687-690. doi: 10.1513/pats.200605-105SF.
doi: 10.1513/pats.200605-105SF URL |
[27] |
Chen L, Luo L, Kang N, et al. The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells. Int J Chron Obstruct Pulmon Dis, 2020, 15:15-24. doi: 10.2147/COPD.S234634.
doi: 10.2147/COPD.S234634 URL |
[28] |
Zhang Y, Cao J, Chen Y, et al. Intraperitoneal injection of cigarette smoke extract induced emphysema, and injury of cardiac and skeletal muscles in BALB/C mice. Exp Lung Res, 2013, 39(1):18-31. doi: 10.3109/01902148.2012.745910.
doi: 10.3109/01902148.2012.745910 pmid: 23216006 |
[29] |
Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol, 2009, 296(4):L648-656. doi: 10.1152/ajplung.90270.2008.
doi: 10.1152/ajplung.90270.2008 URL |
[30] |
He ZH, Chen Y, Chen P, et al. Decitabine enhances stem cell antigen-1 expression in cigarette smoke extract-induced emphysema in animal model. Exp Biol Med (Maywood), 2016, 241(2):131-139. doi: 10.1177/1535370215598402.
doi: 10.1177/1535370215598402 URL |
[31] |
Ge Z, Yang Y, Zhou X, et al. Overexpression of the hyperplasia suppressor gene inactivates airway fibroblasts obtained from a rat model of chronic obstructive pulmonary disease by inhibiting the Wnt signaling pathway. Mol Med Rep, 2019, 20(3):2754-2762. doi: 10.3892/mmr.2019.10504.
doi: 10.3892/mmr.2019.10504 |
[32] |
Rodrigues R, Olivo CR, Lourenço JD, et al. A murine model of elastase- and cigarette smoke-induced emphysema. J Bras Pneumol, 2017, 43(2):95-100. doi: 10.1590/S1806-37562016000000179.
doi: S1806-37132017000200095 pmid: 28538775 |
[33] |
Kohler JB, Cervilha DAB, Riani Moreira A, et al. Microenvironmental stimuli induce different macrophage polarizations in experimental models of emphysema. Biol Open, 2019, 8(4):bio040808. doi: 10.1242/bio.040808.
doi: 10.1242/bio.040808 |
[34] |
Melo AC, Cattani-Cavalieri I, Barroso MV, et al. Atorvastatin dose-dependently promotes mouse lung repair after emphysema induced by elastase. Biomed Pharmacother, 2018, 102:160-168. doi: 10.1016/j.biopha.2018.03.067.
doi: 10.1016/j.biopha.2018.03.067 URL |
[35] |
Zhang Z, Wang J, Liu F, et al. Non-inflammatory emphysema induced by NO(2) chronic exposure and intervention with demethylation 5-Azacytidine. Life Sci, 2019, 221:121-129. doi: 10.1016/j.lfs.2019.02.022.
doi: S0024-3205(19)30112-2 pmid: 30763575 |
[36] |
Cheng Q, Fang L, Feng D, et al. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother, 2019, 109:2005-2013. doi: 10.1016/j.biopha.2018.11.002.
doi: 10.1016/j.biopha.2018.11.002 URL |
[37] |
Surolia R, Karki S, Kim H, et al. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3):L280-292. doi: 10.1152/ajplung.00097.2015.
doi: 10.1152/ajplung.00097.2015 URL |
[38] |
Jin S, Zhao G, Li Z, et al. Age-related pulmonary emphysema in mice lacking alpha/beta hydrolase domain containing 2 gene. Biochem Biophys Res Commun, 2009, 380(2):419-424. doi: 10.1016/j.bbrc.2009.01.098.
doi: 10.1016/j.bbrc.2009.01.098 URL |
[39] |
Su B, Liu T, Fan H, et al. Inflammatory Markers and the Risk of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PLoS One, 2016, 11(4):e0150586. doi: 10.1371/journal.pone.0150586.
doi: 10.1371/journal.pone.0150586 URL |
[40] |
Schober A, Feiner JR, Bickler PE, et al. Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance. Anesthesiology, 2018, 128(1):97-108. doi: 10.1097/ALN.0000000000001898.
doi: 10.1097/ALN.0000000000001898 pmid: 29084012 |
[41] |
He ZH, Chen Y, Chen P, et al. 5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16(Ink4a) expression in lung tissue. Int J Chron Obstruct Pulmon Dis, 2017, 12:3149-3158. doi: 10.2147/COPD.S131090.
doi: 10.2147/COPD.S131090 URL |
[42] |
Oki H, Yazawa T, Baba Y, et al. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema. Microbiol Immunol, 2017, 61(7):264-271. doi: 10.1111/1348-0421.12492.
doi: 10.1111/1348-0421.12492 URL |
[43] |
Kubo H, Asai K, Kojima K, et al. Exercise Ameliorates Emphysema Of Cigarette Smoke-Induced COPD In Mice Through The Exercise-Irisin-Nrf2 Axis. Int J Chron Obstruct Pulmon Dis, 2019, 14:2507-2516. doi: 10.2147/COPD.S226623.
doi: 10.2147/COPD.S226623 URL |
[44] |
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteina-ses in emphysema. Matrix Biol, 2018, 73:34-51. doi: 10.1016/j.matbio.2018.01.018.
doi: S0945-053X(17)30340-2 pmid: 29406250 |
[45] |
Kim YH, Kang MK, Lee EJ, et al. Dried Yeast Extracts Curtails Pulmonary Oxidative Stress, Inflammation and Tissue Destruction in a Model of Experimental Emphysema. Antioxidants, 2019, 8(9):349. doi: 10.3390/antiox8090349.
doi: 10.3390/antiox8090349 URL |
[46] |
Wang XL, Li T, Li JH, et al. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules, 2017, 22(9):1529. doi: 10.3390/molecules22091529.
doi: 10.3390/molecules22091529 URL |
[47] |
Cao Y, Zhou X, Yin Z, et al. The anti-inflammatory effect of BML-111 on COPD may be mediated by regulating NLRP3 inflammasome activation and ROS production. Prostaglandins Other Lipid Mediat, 2018, 138:23-30. doi: 10.1016/j.prostaglandins.2018.08.001.
doi: 10.1016/j.prostaglandins.2018.08.001 |
[48] |
Yamada K, Asai K, Nagayasu F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med, 2016, 16:27. doi: 10.1186/s12890-016-0189-1.
doi: 10.1186/s12890-016-0189-1 URL |
[49] | Zhao YL, Li F, Liu YW, et al. Adiponectin attenuates endoplasmic reticulum stress and alveolar epithelial apoptosis in COPD rats. Eur Rev Med Pharmacol Sci, 2017, 21(21):4999-5007. |
[50] |
Shah PL, Herth FJ, van Geffen WH, et al. Lung volume reduction for emphysema. Lancet Respir Med, 2017, 5(2):147-156. doi: 10.1016/S2213-2600(16)30221-1.
doi: 10.1016/S2213-2600(16)30221-1 URL |
[51] |
Ochs M. Estimating structural alterations in animal models of lung emphysema. Is there a gold standard? Ann Anat, 2014, 196(1):26-33. doi: 10.1016/j.aanat.2013.10.004.
doi: 10.1016/j.aanat.2013.10.004 URL |
[1] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[2] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[3] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[4] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
[5] | 何繁漪, 陆霓虹, 杜映荣. 结核病与COVID-19相互作用的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 345-351. |
[6] | 赵君, 杨红雨, 康雄. 肺结核患者病耻感影响因素及干预策略研究进展[J]. 结核与肺部疾病杂志, 2024, 5(4): 364-369. |
[7] | 屈春瑾, 彭佳怡, 刘鈊逸, 肖冠琛, 顾芬, 李楠楠. 慢性阻塞性肺疾病患者延续性护理研究进展[J]. 结核与肺部疾病杂志, 2024, 5(3): 254-259. |
[8] | 闫彦峰, 漆文霞, 崔永慧, 魏彩虹. 长链非编码RNA在慢性阻塞性肺疾病中的表达及其作用研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 172-178. |
[9] | 朋毛措, 谢俊刚. 免疫细胞在慢性阻塞性肺疾病并发心血管疾病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(2): 179-185. |
[10] | 曹红, 钱冰, 吴金菊. 学校结核病疫情现状及防控工作研究进展[J]. 结核与肺部疾病杂志, 2024, 5(1): 88-92. |
[11] | 戴中上, 钟严俊, 陈燕. 慢性阻塞性肺疾病合并支气管扩张症的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(6): 499-505. |
[12] | 郭晶, 娄南南, 李佳琳, 张华, 马香. 胸闷变异性哮喘与典型哮喘的研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 413-418. |
[13] | 阮淑金, 曾坚, 陈敬芳, 王秀芬, 刘琳琳, 姜游力, 李孟君. 结核病治疗依从性状况、影响因素及干预措施研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 419-424. |
[14] | 冯怡, 常青, 李锋. 肺气肿肺纤维化综合征研究进展[J]. 结核与肺部疾病杂志, 2023, 4(5): 425-431. |
[15] | 袁丽荣, 李淑花, 崔晓红, 裴俊丽, 弓巧巧. 护理突发公共卫生事件应急培训研究进展[J]. 结核与肺部疾病杂志, 2023, 4(3): 235-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||