结核与肺部疾病杂志 ›› 2020, Vol. 1 ›› Issue (3): 276-280.doi: 10.3969/j.issn.2096-8493.2020.03.014
收稿日期:
2020-11-19
出版日期:
2020-12-30
发布日期:
2021-01-05
通信作者:
刘晓清
E-mail:liuxq@pumch.cn
MA Hui-min, ZHANG Li-fan, LIU Xiao-qing()
Received:
2020-11-19
Online:
2020-12-30
Published:
2021-01-05
Contact:
LIU Xiao-qing
E-mail:liuxq@pumch.cn
摘要:
世界卫生组织将潜伏性结核感染(latent tuberculosis infection,LTBI)定义为人体受到结核分枝杆菌抗原刺激后出现持续免疫反应,而没有表现出活动性结核病临床证据的一种状态。全球约1/4的人感染了结核分枝杆菌,其中约5%~10%的感染者最终会进展为活动性结核病。因此,研究LTBI进展为活动性结核病的机制对结核病防控意义重大。作者从结核分枝杆菌感染进程、LTBI进展为活动性结核病的免疫学改变,以及诱发LTBI再活动的危险因素等方面对这一热点问题进行综述。
马慧敏, 张丽帆, 刘晓清. 潜伏性结核感染进展为活动性结核病的机制研究[J]. 结核与肺部疾病杂志, 2020, 1(3): 276-280. doi: 10.3969/j.issn.2096-8493.2020.03.014
MA Hui-min, ZHANG Li-fan, LIU Xiao-qing. Research progress on the mechanism of latent tuberculosis infection progressing to active tuberculosis[J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 276-280. doi: 10.3969/j.issn.2096-8493.2020.03.014
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[3] |
Rao M, Ippolito G, Mfinanga S, et al. Latent TB Infection (LTBI)-Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battleground. Int J Infect Dis, 2019,80S:S58-S61. doi: 10.1016/j.ijid.2019.02.035.
URL pmid: 30822547 |
[4] | Kondratieva T, Azhikina T, Nikonenko B, et al. Latent tuberculosis infection:what we know about its genetic control? Tuberculosis (Edinb), 2014,94(5):462-468. doi: 10.1016/j.tube.2014.06.009. |
[5] |
Khader SA, Divangahi M, Hanekom W, et al. Targeting innate immunity for tuberculosis vaccination. J Clin Invest, 2019,129(9):3482-3491. doi: 10.1172/JCI128877.
URL pmid: 31478909 |
[6] |
Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015,264(1):220-232. doi: 10.1111/imr.12268.
doi: 10.1111/imr.12268 URL pmid: 25703562 |
[7] |
Sia JK, Georgieva M, Rengarajan J. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J Immunol Res, 2015,2015:747543. doi: 10.1155/2015/747543.
doi: 10.1155/2015/747543 URL pmid: 26258152 |
[8] |
Dallenga T, Schaible UE. Neutrophils in tuberculosis first line of defence or booster of disease and targets for host-directed therapy? Pathog Dis, 2016,74(3):ftw012. doi: 10.1093/femspd/ftw012.
doi: 10.1093/femspd/ftw012 URL pmid: 26903072 |
[9] |
Kee SJ, Kwon YS, Park YW, et al. Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun, 2012,80(6):2100-2108. doi: 10.1128/IAI.06018-11.
doi: 10.1128/IAI.06018-11 URL pmid: 22409933 |
[10] |
Lu CC, Wu TS, Hsu YJ, et al. NK cells kill mycobacteria directly by releasing perforin and granulysin. J Leukoc Biol, 2014,96(6):1119-1129. doi: 10.1189/jlb.4A0713-363RR.
doi: 10.1189/jlb.4A0713-363RR URL pmid: 25139289 |
[11] |
Roy Chowdhury R, Vallania F, Yang Q, et al. Author Correction: A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes. Nature, 2018,564(7734):E5. doi: 10.1038/s41586-018-0635-8.
doi: 10.1038/s41586-018-0635-8 URL pmid: 30377311 |
[12] |
Geldmacher C, Zumla A, Hoelscher M. Interaction between HIV and Mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis. Curr Opin HIV AIDS, 2012,7(3):268-275. doi: 10.1097/COH.0b013e3283524e32.
URL pmid: 22495739 |
[13] |
Commandeur S, Lin MY, van Meijgaarden KE, et al. Double- and monofunctional CD4+ and CD8+ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol, 2011,41(10):2925-2936. doi: 10.1002/eji.201141602.
doi: 10.1002/eji.201141602 URL pmid: 21728172 |
[14] |
Mourik BC, Lubberts E, de Steenwinkel JEM, et al. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol, 2017,8:294. doi: 10.3389/fimmu.2017.00294.
doi: 10.3389/fimmu.2017.00294 URL pmid: 28424682 |
[15] |
Gong W, Wang P, Xiong X, et al. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice. PLoS One, 2015,10(4):e0124664. doi: 10.1371/journal.pone.0124664.
doi: 10.1371/journal.pone.0124664 URL pmid: 25909586 |
[16] |
Gong W, Wang P, Xiong X, et al. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine, 2015,33(8):985-992. doi: 10.1016/j.vaccine.2015.01.017.
URL pmid: 25597943 |
[17] |
Gong W, Qi Y, Xiong X, et al. Rickettsia rickettsii outer membrane protein YbgF induces protective immunity in C3H/HeN mice. Hum Vaccin Immunother, 2015,11(3):642-649. doi: 10.1080/21645515.2015.1011572.
doi: 10.1080/21645515.2015.1011572 URL |
[18] |
Liang Y, Zhang X, Xiao L, et al. Immunogenicity and therapeutic effects of pVAX1-rv1419 DNA from Mycobacterium tuberculosis. Curr Gene Ther, 2016,16:249-255. doi: 10.2174/1566523216666161102170123.
doi: 10.2174/1566523216666161102170123 URL |
[19] |
Wilkie ME, McShane H. TB vaccine development: where are we and why is it so difficult? Thorax, 2015,70(3):299-301. doi: 10.1136/thoraxjnl-2014-205202.
URL pmid: 25432943 |
[20] |
Prezzemolo T, Guggino G, La Manna MP, et al. Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol, 2014,5:180. doi: 10.3389/fimmu.2014.00180.
doi: 10.3389/fimmu.2014.00180 URL pmid: 24795723 |
[21] |
Basile JI, Geffner LJ, Romero MM, et al. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis, 2011,204(7):1054-1064. doi: 10.1093/infdis/jir460.
doi: 10.1093/infdis/jir460 URL |
[22] |
Wareham AS, Tree JA, Marsh PD, et al. Evidence for a role for interleukin-17, Th17 cells and iron homeostasis in protective immunity against tuberculosis in cynomolgus macaques. PLoS One, 2014,9(2):e88149. doi: 10.1371/journal.pone.0088149.
doi: 10.1371/journal.pone.0088149 URL pmid: 24505407 |
[23] |
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol, 2015,37(3):239-249. doi: 10.1007/s00281-015-0490-8.
URL pmid: 25917388 |
[24] |
Busch M, Herzmann C, Kallert S, et al. Lipoarabinomannan-Responsive Polycytotoxic T Cells Are Associated with Protection in Human Tuberculosis. Am J Respir Crit Care Med, 2016,194(3):345-355. doi: 10.1164/rccm.201509-1746OC.
doi: 10.1164/rccm.201509-1746OC URL pmid: 26882070 |
[25] |
Li G, Yang F, He X, et al. Anti-tuberculosis (TB) chemotherapy dynamically rescues Th1 and CD8+ T effector levels in Han Chinese pulmonary TB patients. Microbes Infect, 2020,22(3):119-126. doi: 10.1016/j.micinf.2019.10.001.
doi: 10.1016/j.micinf.2019.10.001 URL pmid: 31678658 |
[26] |
Scanga CA, Mohan VP, Yu K, et al. Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med, 2000,192(3):347-358. doi: 10.1084/jem.192.3.347.
URL pmid: 10934223 |
[27] |
Naranbhai V, Hill AV, Abdool Karim SS, et al. Ratio of monocytes to lymphocytes in peripheral blood identifies adults at risk of incident tuberculosis among HIV-infected adults initiating antiretroviral therapy. J Infect Dis, 2014,209(4):500-509. doi: 10.1093/infdis/jit494.
doi: 10.1093/infdis/jit494 URL pmid: 24041796 |
[28] |
Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev, 2015,264(1):167-181. doi: 10.1111/imr.12276.
doi: 10.1111/imr.12276 URL pmid: 25703559 |
[29] |
Jacobs AJ, Mongkolsapaya J, Screaton GR, et al. Antibodies and tuberculosis. Tuberculosis (Edinb), 2016,101:102-113. doi: 10.1016/j.tube.2016.08.001.
doi: 10.1016/j.tube.2016.08.001 URL |
[30] |
Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol, 2008,8(1):34-47. doi: 10.1038/nri2206.
URL pmid: 18064051 |
[31] |
Maglione PJ, Xu J, Casadevall A, et al. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol, 2008,180(5):3329-3338. doi: 10.4049/jimmunol.180.5.3329.
doi: 10.4049/jimmunol.180.5.3329 URL pmid: 18292558 |
[32] |
Sutherland JS, Loxton AG, Haks MC, et al. Differential gene expression of activating Fcγ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clin Microbiol Infect, 2014,20(4):O230-238. doi: 10.1111/1469-0691.12383.
doi: 10.1111/1469-0691.12383 URL pmid: 24205913 |
[33] |
Amogne W, Mugusi S, Janabi M, et al. Copy number variation of Fc gamma receptor genes in HIV-infected and HIV-tuberculosis co-infected individuals in sub-Saharan Africa. PLoS One, 2013,8(11):e78165. doi: 10.1371/journal.pone.0078165.
doi: 10.1371/journal.pone.0078165 URL |
[34] |
Ballow M. The IgG molecule as a bio logical immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol, 2011, 127(2):315-323; quiz 324-325. doi: 10.1016/j.jaci.2010.10.030.
doi: 10.1016/j.jaci.2010.10.030 URL pmid: 21185071 |
[35] |
Fletcher HA, Snowden MA, Landry B, et al. T-cell activation is an immune correlate of risk in BCG vaccinated infants. Nat Commun, 2016,7:11290. doi: 10.1038/ncomms11290.
doi: 10.1038/ncomms11290 URL pmid: 27068708 |
[36] |
Phuah J, Wong EA, Gideon HP, et al. Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques. Infect Immun, 2016,84(5):1301-1311. doi: 10.1128/IAI.00083-16.
doi: 10.1128/IAI.00083-16 URL pmid: 26883591 |
[37] |
Joosten SA, van Meijgaarden KE, Del Nonno F, et al. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog, 2016,12(6):e1005687. doi: 10.1371/journal.ppat.1005687.
doi: 10.1371/journal.ppat.1005687 URL pmid: 27304615 |
[38] |
Harries AD, Zachariah R, Corbett EL, et al. The HIV-associated tuberculosis epidemic--when will we act? Lancet, 2010,375(9729):1906-1919. doi: 10.1016/S0140-6736(10)60409-6.
doi: 10.1016/S0140-6736(10)60409-6 URL pmid: 20488516 |
[39] |
Samuel M, Jose S, Winston A, et al. The effects of age on associations between markers of HIV progression and markers of metabolic function including albumin, haemoglobin and lipid concentrations. HIV Med, 2014,15(5):311-316. doi: 10.1111/hiv.12103.
doi: 10.1111/hiv.12103 URL pmid: 24245861 |
[40] |
Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol, 2002,168(9):4620-4627. doi: 10.4049/jimmunol.168.9.4620.
doi: 10.4049/jimmunol.168.9.4620 URL pmid: 11971010 |
[41] |
Vila-del Sol V, Díaz-Muñoz MD, Fresno M. Requirement of tumor necrosis factor alpha and nuclear factor-kappaB in the induction by IFN-gamma of inducible nitric oxide synthase in macrophages. J Leukoc Biol, 2007,81(1):272-283. doi: 10.1189/jlb.0905529.
doi: 10.1189/jlb.0905529 URL pmid: 17035338 |
[42] |
Nocturne G, Boudaoud S, Ly B, et al. Impact of anti-TNF therapy on NK cells function and on immunosurveillance against B-cell lymphomas. J Autoimmun, 2017,80:56-64. doi: 10.1016/j.jaut.2017.02.001.
doi: 10.1016/j.jaut.2017.02.001 URL pmid: 28214146 |
[43] |
Miller EA, Ernst JD. Anti-TNF immunotherapy and tuberculosis reactivation: another mechanism revealed. J Clin Invest, 2009,119(5):1079-1082. doi: 10.1172/jci39143.
URL pmid: 19422095 |
[44] |
Lönnroth K, Castro KG, Chakaya JM, et al. Tuberculosis control and elimination 2010-50: cure, care, and social develo-pment. Lancet, 2010,375(9728):1814-1829. doi: 10.1016/S0140-6736(10)60483-7.
doi: 10.1016/S0140-6736(10)60483-7 URL pmid: 20488524 |
[45] |
Martinez L, Zhu L, Castellanos ME, et al. Glycemic Control and the Prevalence of Tuberculosis Infection: A Population-based Observational Study. Clin Infect Dis, 2017,65(12):2060-2068. doi: 10.1093/cid/cix632.
doi: 10.1093/cid/cix632 URL pmid: 29059298 |
[46] |
Al-Rifai RH, Pearson F, Critchley JA, et al. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 2017,12(11):e0187967. doi: 10.1371/journal.pone.0187967.
doi: 10.1371/journal.pone.0187967 URL pmid: 29161276 |
[47] |
Huangfu P, Ugarte-Gil C, Golub J, et al. The effects of diabetes on tuberculosis treatment outcomes: an updated syste-matic review and meta-analysis. Int J Tuberc Lung Dis, 2019,23(7):783-796. doi: 10.5588/ijtld.18.0433.
URL pmid: 31439109 |
[48] |
Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect Dis, 2009,9(12):737-746. doi: 10.1016/S1473-3099(09)70282-8.
doi: 10.1016/S1473-3099(09)70282-8 URL |
[49] |
Kumar NP, George PJ, Kumaran P, et al. Diminished systemic and antigen-specific type 1, type 17, and other proinflammatory cytokines in diabetic and prediabetic individuals with latent Mycobacterium tuberculosis infection. J Infect Dis, 2014,210(10):1670-1678. doi: 10.1093/infdis/jiu329.
doi: 10.1093/infdis/jiu329 URL pmid: 24907382 |
[50] |
Plum G, Brenden M, Clark-Curtiss JE, et al. Cloning, sequencing, and expression of the mig gene of Mycobacterium avium, which codes for a secreted macrophage-induced protein. Infect Immun, 1997,65(11):4548-4557. doi: 10.1128/IAI.65.11.4548-4557.1997.
doi: 10.1128/IAI.65.11.4548-4557.1997 URL pmid: 9353032 |
[51] |
Velmurugan K, Chen B, Miller JL, et al. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog, 2007,3(7):e110. doi: 10.1371/journal.ppat.0030110.
doi: 10.1371/journal.ppat.0030110 URL pmid: 17658950 |
[52] |
Kumar R, Bhakuni V. Mycobacterium tuberculosis isocitrate lyase (MtbIcl): role of divalent cations in modulation of functional and structural properties. Proteins, 2008,72(3):892-900. doi: 10.1002/prot.21984.
doi: 10.1002/prot.21984 URL pmid: 18275086 |
[53] |
Steyn AJ, Collins DM, Hondalus MK, et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci U S A, 2002,99(5):3147-3152. doi: 10.1073/pnas.052705399.
doi: 10.1073/pnas.052705399 URL pmid: 11880648 |
[54] |
Chen T, Blanc C, Eder AZ, et al. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. J Infect Dis, 2016,214(2):300-310. doi: 10.1093/infdis/jiw141.
doi: 10.1093/infdis/jiw141 URL pmid: 27056953 |
[55] |
Mertaniasih NM, Handijatno D, Sis AD. Sequence Analysis of the Gene Region Encoding ESAT-6, Ag85B, and Ag85 C Proteins from Clinical Isolates of Mycobacterium tuberculosis. Procedia Chem, 2016,18:225-230. doi: 10.1016/j.proche.2016.01.035.
doi: 10.1016/j.proche.2016.01.035 URL |
[56] |
Spira A, Carroll JD, Liu G, et al. Apoptosis genes in human alveolar macrophages infected with virulent or attenuated Mycobacterium tuberculosis: a pivotal role for tumor necrosis factor. Am J Respir Cell Mol Biol, 2003,29(5):545-551. doi: 10.1165/rcmb.2002-0310OC.
doi: 10.1165/rcmb.2002-0310OC URL pmid: 12748057 |
[57] |
Rich AR. The Pathogenesis of Tuberculosis. Science, 1944,100(2601):407-408. doi: 10.1126/science.100.2601.407.
doi: 10.1126/science.100.2601.407 URL |
[1] | 赵永年, 张丽杰, 王童敏. 2014—2023年新疆生产建设兵团肺结核报告发病流行病学特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 30-34. |
[2] | 杨艳, 董文, 陈建军, 张玉. 2014—2023年湖北省十堰市竹溪县肺结核流行特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 40-45. |
[3] | 齐威, 赵恩奕. 2006—2020年天津市中心城区老年与非老年肺结核流行特征及变化趋势[J]. 结核与肺部疾病杂志, 2025, 6(1): 46-54. |
[4] | 闫文华, 陈文君. 数智化健康教育在菌阳肺结核患者陪护者预防管理中的价值[J]. 结核与肺部疾病杂志, 2025, 6(1): 73-78. |
[5] | 廖影, 庞艳, 赵静, 何高琴, 游茂林, 王蕾. 2018—2023年重庆市梁平区肺结核患者报告情况及发现延迟特征分析[J]. 结核与肺部疾病杂志, 2025, 6(1): 8-13. |
[6] | 杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展[J]. 结核与肺部疾病杂志, 2025, 6(1): 94-101. |
[7] | 唐逾鸿, 江莉娜. 2019—2023年合川区大学学生肺结核流行病学特征分析[J]. 结核与肺部疾病杂志, 2024, 5(S): 93-95. |
[8] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读[J]. 结核与肺部疾病杂志, 2024, 5(6): 500-504. |
[9] | 魏潇雯, 董宁, 沈蕾, 陶永红, 吴元浩, 张林. 儿童结核病患者父母照护体验及需求的质性研究[J]. 结核与肺部疾病杂志, 2024, 5(6): 505-510. |
[10] | 范伟芳, 黄金鹏, 姚丽伟. 结核后肺疾病患者肺康复护理的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 560-566. |
[11] | 朱衣兴, 常德. 慢性呼吸系统疾病管理的现状和展望[J]. 结核与肺部疾病杂志, 2024, 5(6): 567-572. |
[12] | 孟婷, 陈敬芳, 邓国防, 林奕, 阮淑金, 刘琳琳, 李孟君. 结核病患者心理脆弱及焦虑抑郁状态相关研究进展[J]. 结核与肺部疾病杂志, 2024, 5(6): 583-589. |
[13] | 蔡晓婷, 杜雨华, 吴桂锋, 何立乾, 苏碧慧, 龚芳, 王挺, 赖铿, 伍小英. 2016—2023年广州市肺结核登记情况及特征分析[J]. 结核与肺部疾病杂志, 2024, 5(5): 430-436. |
[14] | 曾琴, 曾凡清, 何坤, 杨红红, 刘敏. 常规病理学镜检、抗酸染色镜检及TB-DNA在浅表淋巴结结核诊断中的价值[J]. 结核与肺部疾病杂志, 2024, 5(5): 461-467. |
[15] | 赵菲, 詹璐. miR-451a调控TLR4信号通路在结核病发病中的研究进展[J]. 结核与肺部疾病杂志, 2024, 5(5): 484-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||