Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (1): 78-84.doi: 10.19983/j.issn.2096-8493.20220136
• Review Articles • Previous Articles Next Articles
Yan Jinyan1, Li Xiaomin2, Ma Xiang3()
Received:
2022-08-23
Online:
2023-02-20
Published:
2023-02-09
Contact:
Ma Xiang
E-mail:maxiang0176@163.com
Supported by:
CLC Number:
Yan Jinyan, Li Xiaomin, Ma Xiang. Research progress on the mechanism of there relationship between asthma and pertussisin children[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(1): 78-84. doi: 10.19983/j.issn.2096-8493.20220136
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220136
[1] |
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版). 中华结核和呼吸杂志, 2020, 43(12):1023-1048. doi:10.3760/cma.j.cn112147-20200618-00721.
doi: 10.3760/cma.j.cn112147-20200618-00721 |
[2] |
Padem N, Saltoun C. Classification of asthma. Allergy Asthma Pro, 2019, 40(6):385-388. doi:10.2500/aap.2019.40.4253.
doi: 10.2500/aap.2019.40.4253. |
[3] |
Jartti T, Bønnelykke K, Elenius V, et al. Role of viruses in asthma. Semin Immunopathol, 2020, 42(1):61-74. doi:10.1007/s00281-020-00781-5.
doi: 10.1007/s00281-020-00781-5 pmid: 31989228 |
[4] |
马香, 杨永弘. 呼吸道细菌感染与哮喘关系的研究进展. 国际呼吸杂志, 2012(20):1587-1590. doi:10.3760/cma.j.issn.1673-436x.2012.020.016.
doi: 10.3760/cma.j.issn.1673-436x.2012.020.016. |
[5] |
中华预防医学会, 中华预防医学会疫苗与免疫分会. 中国百日咳行动计划专家共识. 中华预防医学杂志, 2021, 55(6):709-719. doi:10.3760/cma.j.cn112150-20210308-00230.
doi: 10.3760/cma.j.cn112150-20210308-00230. |
[6] |
滕瑞红, 付丽, 柳俊芳, 等. 儿童咳嗽变异性哮喘误诊原因分析. 临床误诊误治, 2020, 33(7):1-4. doi:10.3969/j.issn.1002-3429.2020.07.001.
doi: 10.3969/j.issn.1002-3429.2020.07.001. |
[7] |
Chen S, Wang Y, Li A, et al. Etiologies of Hospitalized Acute Bronchiolitis in Children 2 Years of Age and Younger:A 3 Years’Study During a Pertussis Epidemic. Front Pediatr, 2021, 9:621381. doi:10.3389/fped.2021.621381.
doi: 10.3389/fped.2021.621381. URL |
[8] |
Wang G, Han D, Jiang Z, et al. Association between early bronchiolitis and the development of childhood asthma:a meta-analysis. BMJ Open, 2021, 11(5):e043956. doi:10.1136/bmjopen-2020-043956.
doi: 10.1136/bmjopen-2020-043956. |
[9] |
Jartti T, Mäkelä MJ, Vanto T, et al. The link between bronchiolitis and asthma. Infect Dis Clin North Am, 2005, 19(3):667-689. doi:10.1016/j.idc.2005.05.010.
doi: 10.1016/j.idc.2005.05.010. URL |
[10] |
郏继航, 郭琴, 万朝敏. 百日咳再现与疫苗策略研究进展. 中华儿科杂志, 2020, 58(8):686-689. doi:10.3760/cma.j.cn112140-20200116-00036.
doi: 10.3760/cma.j.cn112140-20200116 |
[11] |
刘艳芹, 于华凤, 马香. 百日咳再现及其应对措施的研究进展. 国际儿科学杂志, 2020, 47(2):5-7.doi:10.3760/cma.j.issn.1673-4408.2020.02.005.
doi: 10.3760/cma.j.issn.1673-4408.2020.02.005. |
[12] |
Hellenbrand W, Beier D, Jensen E, et al. The epidemiology of pertussis in Germany:pastandpresent. BMC Infect Dis, 2009, 9:22. doi:10.1186/1471-2334-9-22.
doi: 10.1186/1471-2334-9-22 pmid: 19243604 |
[13] |
Juretzko P, Fabian Marx T, Haastert B, et al. Pertussis in Germany:Regional differences in management and vaccination status of hospitalize dcases. Epidemio Infect, 2001, 127(1):63-71. doi:10.1017/s0950268801005593.
doi: 10.1017/s0950268801005593. |
[14] |
Nicolai T, Bellach B, Mutius EV, et al. Increased prevalence of sensitization against aeroallergens in adults in West compared with East Germany. Clin Exp Allergy, 1997, 27(8):886-892.
pmid: 9291284 |
[15] |
Rubin K, Glazer S. The pertussis hypothesis: Bordetella pertussis colonization in the etiology of asthma and diseases of Allergic sensitization. Med Hypotheses, 2018, 120:101-115. doi:10.1016/j.mehy.2018.08.006.
doi: S0306-9877(18)30668-6 pmid: 30220328 |
[16] |
谢甜, 钟礼立, 黄寒, 等. 225例支气管哮喘急性发作患儿呼吸道病原体检出及临床特征分析. 中国当代儿科杂志, 2020, 22(11):1198-1203. doi:10.7499/j.issn.1008-8830.2006024.
doi: 10.7499/j.issn.1008-8830.2006024. |
[17] |
孟庆红, 丁明杰, 史伟, 等. 肺炎或哮喘住院患儿百日咳感染状况的血清学调查. 贵州医科大学学报, 2017, 42(11):1292-1296. doi:10.19367/j.Cnki.1000-2707.2017.11.012.
doi: 10.19367/j.Cnki.1000-2707.2017.11.012. |
[18] |
Burgess JA, Abramson MJ, Gurrin LC, et al. Childhood infections and the risk of asthma: a longitudinal study over 37 years. Chest, 2012, 142(3): 647-654. doi:10.1378/chest.11-1432.
doi: S0012-3692(12)60508-X pmid: 22459783 |
[19] |
Nagel G, Weinmayr G, Flohr C, et al. Association of pertussis and measles infections and immunizations with asthma and allergic sensitization in ISAAC Phase Two. Pediatr Allergy Immunol, 2012, 23(8): 737-746. doi:10.1111/pai.12007.
doi: 10.1111/pai.12007. |
[20] |
Kendirli SG, Yilmaz M, Bayram I, et al. Potential association between allergic diseases and pertussis infection in schoolchildren: results of two cross-sectional studies seven years apart. Allergol Immunopathol (Madr), 2009, 37(1):21-25. doi:10.1016/s0301-0546(09)70247-2.
doi: 10.1016/s0301-0546(09)70247-2. URL |
[21] |
杨霞, 李超乾. 哮喘的免疫学机制及应用草分支杆菌治疗的进展. 实用医学杂志, 2017, 33(12):2064-2066. doi:10.3969/j.issn.1006-5725.2017.12.047.
doi: 10.3969/j.issn.1006-5725.2017.12.047. |
[22] |
Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(6):1469-1485. doi:10.1016/j.cell.2021.02.016.
doi: 10.1016/j.cell.2021.02.016 pmid: 33711259 |
[23] |
Scanlon K, Skerry C, Carbonetti N. Association of pertussis toxin with severe pertussis disease. Toxins, 2019, 11(7): 373. doi:10.3390/toxins11070373.
doi: 10.3390/toxins11070373. URL |
[24] |
Forghani H, Jamshidi Makiani M, Zarei Jaliani H, et al. Toward an Alum Free Mono-Component Monovalent Pertussis Vaccine: A Cytokine Response Assay. Iran J Immunol, 2020, 17(2): 111-120. doi:10.22034/iji.2020.86199.1749.
doi: 10.22034/iji.2020.86199.1749 pmid: 32602465 |
[25] |
刘苗, 马香. 儿童百日咳与支气管哮喘关系的研究进展. 国际呼吸杂志, 2021, 41(1):63-68. doi:10.3760/cma.j.cn131368-20200306-00129.
doi: 10.3760/cma.j.cn131368-20200306-00129. |
[26] |
Massey O, Suphioglu C. Recent Advances in the Inhibition of the IL-4 Cytokine Pathway for the Treatment of Allergen-Induced Asthma. Int J Mol Sci, 2021, 22(24):13655. doi:10.3390/ijms222413655.
doi: 10.3390/ijms222413655. URL |
[27] | 于华凤, 韩玉玲, 马香, 等. 儿童支气管哮喘血清IL-4、IL-10和IFN-γ浓度的测定及其临床意义. 中国实用医药, 2010, 33:13. |
[28] |
Manson ML, Säfholm J, James A, et al. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol, 2020, 145(3): 808-817. doi:10.1016/j.jaci.2019.10.037.
doi: S0091-6749(19)31618-5 pmid: 31805312 |
[29] |
Liu D, Tan Y, Bajinka O, et al. Th17/IL-17 Axis Regulated by Airway Microbes Get Involved in the Development of Asthma. Curr Allergy Asthma Rep, 2020, 20(4): 11. doi:10.1007/s11882-020-00903-x.
doi: 10.1007/s11882-020-00903-x. URL |
[30] |
Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Curr Opin Immunol, 2019, 59:72-78. doi:10.1016/j.coi.2019.03.006. PMID:31078081.
doi: S0952-7915(18)30123-7 pmid: 31078081 |
[31] |
Warfel JM, Merkel TJ. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Thl7 and Thl immune memory cells in nonhuman primates. MucosalImmunol, 2012, 6(4):787-796. doi:10.1038/mi.2012.117.
doi: 10.1038/mi.2012.117. |
[32] | 樊德利, 赵翊, 李伟. SP-A、TNF-α、IL-6、IL-8在支气管哮喘中的检测与分析. 中国卫生检验杂志, 2011, 21(2):450-451,453. |
[33] |
Borkner L, Curham LM, Wilk MM, et al. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol, 2021, 14(5):1183-1202. doi:10.1038/s41385-021-00407-5.
doi: 10.1038/s41385-021-00407-5 pmid: 33976385 |
[34] |
Mosley YY, Lu F, HogenEsch H. Differences in innate IFNγ and IL-17 responses to Bordetella pertussis between BALB/c and C57BL/6 mice: role of γδT cells, NK cells, and dendritic cells. Immunol Res, 2017, 65(6):1139-1149. doi:10.1007/s12026-017-8957-4.
doi: 10.1007/s12026-017-8957-4. URL |
[35] |
Ramakrishnan RK, Al Heialy S, Hamid Q. Role of IL-17 in asthma pathogenesis and its implications for the clinic (Review). Expert Rev Respir Med, 2019, 13(11): 1057-1068. doi:10.1080/17476348.2019.1666002.
doi: 10.1080/17476348.2019.1666002. URL |
[36] |
Gans MD, Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr Respir Rev, 2020, 36:118-127. doi:10.1016/j.prrv.2019.08.002.
doi: 10.1016/j.prrv.2019.08.002 pmid: 31678040 |
[37] |
Novosad J, Krčmová I. Evolution of our view on the IgE molecule role in bronchial asthma and the clinical effect of its modulation by omalizumab: Where do we stand today? Int J Immunopathol Pharmacol, 2020, 34:2058738420942386. doi:10.1177/2058738420942386.
doi: 10.1177/2058738420942386. |
[38] |
Schuster A, Hofmann A, Reinhardt D. Does pertussis infection induce manifestation of allergy? Clin Investig, 1993, 71(3):208-213. doi:10.1007/BF00180103.
doi: 10.1007/BF00180103. |
[39] | 严杰, 毛亚飞, 邵浙新. 百日咳鲍特菌外膜蛋白体外促肥大细胞脱颗粒的作用. 中华微生物学和免疫学杂志, 2004, 24(8):606-610. |
[40] |
Ennis DP, Cassidy JP, Mahon BP. Whole-cell pertussis vaccine protects against Bordetella pertussis exacerbation of allergic asthma. Immunol Lett, 2005, 97(1): 91-100. doi:10.1016/j.imlet.2004.10.011.
doi: 10.1016/j.imlet.2004.10.011. pmid: 15626480 |
[41] |
Bernsen RM, de Jongste JC, van der Wouden JC. Lower risk of atopic disorders in whole cell pertussis-vaccinated children. Eur Respir J, 2003, 22(6): 962-964. doi:10.1183/09031936.03.00039803.
doi: 10.1183/09031936.03.00039803 pmid: 14680086 |
[42] |
Aun MV, Almeida FM, Saraiva-Romanholo BM, et al. Diphteria-tetanus-pertussis vaccine reduces specific IgE, inflammation and remodelling in an animal model of mite-induced respiratory allergy. Vaccine, 2020, 38(1): 70-78. doi:10.1016/j.vaccine.2019.09.095.
doi: S0264-410X(19)31338-6 pmid: 31630941 |
[43] |
Mrozek-Budzyn D, Majewska R, Kieltyka A, et al. Whole-cell pertussis vaccine (DTwP) has no influence on allergic diseases and atopic sensitization in children. Postepy Dermatol Alergol, 2018, 35(4): 381-386. doi:10.5114/ada.2018.77668.
doi: 10.5114/ada.2018.77668. |
[44] |
Sekiya K. Effects of Bordetella pertussis components on IgE and IgG1 responses. Microbiol Immunol, 1983, 27(11):905-915. doi:10.1111/j.13480421.1983.tb00656.x.
doi: 10.1111/j.13480421.1983.tb00656.x. pmid: 6321910 |
[45] |
Roth M, Zhong J, Zumkeller C, et al. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. Plos One, 2013, 8(2): e56015. doi:10.1371/journal.pone.0056015.
doi: 10.1371/journal.pone.0056015. URL |
[46] |
Matucci A, Vultaggio A, Maggi E, et al. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res, 2018, 19(1):113. doi:10.1186/s12931-018-0813-0.
doi: 10.1186/s12931-018-0813-0. URL |
[47] |
Zhu M, Tian D, Li J, et al. Glycogen synthase kinase 3beta and beta-catenin are involved in the injury and repair of bronchial epithelial cellsinduced by scratching. Exp Mol Pathol, 2007, 83(1): 30-38. doi:10.1016/j.yexmp.2007.02.001.
doi: 10.1016/j.yexmp.2007.02.001. URL |
[48] |
贾宵宵, 郑榕颖, 黄悦, 等. Wnt/β-catenin信号通路调控哮喘气道重塑的机制研究. 中国病理生理杂志, 2017, 33(9):1683-1689.doi:10.3969/j.issn.1000-4718.2017.09.024.
doi: 10.3969/j.issn.1000-4718.2017.09.024. |
[49] |
Kilander MB, Dijksterhuis JP, Ganji RS, et al. WNT-5A stimulates the GDP/GTP exchange at pertussis toxin-sensitive heterotrimeric G proteins. Cell Signal, 2011, 23(3): 550-554. doi:10.1016/j.cellsig.2010.11.004.
doi: 10.1016/j.cellsig.2010.11.004 pmid: 21070854 |
[50] |
Halleskog C, Schulte G. Pertussis toxin-sensitive heterotrimericG (αi/o) proteinsmediate WNT/β-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A. Cell Signal, 2013, 25(4): 822-828. doi:10.1016/j.cellsig. 2012.12.006.
doi: 10.1016/j.cellsig.2012.12.006 pmid: 23266471 |
[51] |
Vanoni S, Scantamburlo G, Dossena S,et,al. Interleukin-Mediated Pendrin Transcriptional Regulation in Airway and Esophageal Epithelia. Int J Mol Sci, 2019, 20(3): 731. doi:10.3390/ijms20030731.
doi: 10.3390/ijms20030731. URL |
[52] |
郭文婧, 邹映雪. 百日咳毒素的研究进展. 国际儿科学杂志, 2020, 47(5): 312-316. doi:10.3760/cma.j.issn.1673-4408.2020.05.004
doi: 10.3760/cma.j.issn.1673-4408.2020.05.004 |
[53] |
Scanlon K, Skerry C, Carbonetti N. Role of MajorTox in Virulence Factors in Pertussis Infection and Disease Pathogenesis. Adv Exp Med Biol, 2019, 1183:35-51. doi:10.1007/5584_2019_403.
doi: 10.1007/5584_2019_403 pmid: 31376138 |
[54] |
Chen X, Wang K, Yao Q, et al. The relationship between the rs 4986791 variant of the TLR4 gene and the severity of bronchial asthma in children. Asian Pac J Allergy Immunol, 2021.10.12932/AP-100920-0954. doi:10.12932/AP-100920-0954.
doi: 10.12932/AP-100920-0954. |
[55] |
Banus S, Stenger RM, Gremmer ER, et al. The role of Toll-like receptor-4 in pertussisvaccine-inducedimmunity. BMC Immunol, 2008, 9:21.
doi: 10.1186/1471-2172-9-21 URL |
[56] |
Sinha S, Singh J, Jindal SK, et al. Roleof TLR4C>1196T(Thr399Ile) and TLR4A>896G(Asp299Gly) polymorphisms in a North Indian population withasthma:acase-controlstudy. Int J Immunogenet, 2014, 41(6):463-471. doi:10.1111/iji.12115.
doi: 10.1111/iji.12115 pmid: 25331070 |
[57] |
Wingler LM, Lefkowitz RJ. Conformational basis of G protein-coupled receptor signal ingversatility. Trends Cell Biol, 2020, 30(9):736-747. doi:10.1016/j.tcb.2020.06.002.
doi: S0962-8924(20)30120-3 pmid: 32622699 |
[58] |
Fuentes N, McCullough M, Panettieri RA Jr. RGS proteins, GRKs, and beta-arrestins modulate G protein-mediated signaling pathways in asthma. Pharmacol Ther, 2021, 223: 107818. doi:10.1016/j.pharmthera.2021.107818.
doi: 10.1016/j.pharmthera.2021.107818. URL |
[59] |
Sharma P, Penn RB. Can GPCRs be targeted to control inflammation in asthma? Adv Exp Med Biol, 2021, 1304: 1-20. doi:10.1007/978-3-030-68748-9_1.
doi: 10.1007/978-3-030-68748-9_1 pmid: 34019260 |
[60] |
Paramonov VM, Sahlgren C, Rivero-Müller A, et al. iGIST-A Kinetic Bioassay for Pertussis Toxin Based on Its Effect on Inhibitory GPCR Signaling. ACS Sens, 2020, 5(11): 3438-3448. doi:10.1021/acssensors.0c01340.
doi: 10.1021/acssensors.0c01340. URL |
[61] |
Garcia JG, Wang P, Schaphorst KL, et al. Critical involvement of p 38 MAP kinase in pertussis toxin-induced cytoskeletal reorganization and lung permeability. FASEB, 2002, 16(9): 1064-1076. doi:10.1096/fj.01-0895com.
doi: 10.1096/fj.01-0895com. URL |
[62] |
Wilson R, Read R, Thomas M, et al. Effects of Bordetella pertussis infectionon human respiratory epithelium in vivo and in vitro. Infect Immun, 1991, 59(1):337-345. doi:10.1128/iai.59.1.337-345.1991.
doi: 10.1128/iai.59.1.337-345.1991 pmid: 1987048 |
[63] |
Soane MC, Jackson A, Maskell D, et al. Interaction of Bordetella pertussis with human respiratory mucosainvitro. Respir Med, 2000, 94(8):791-799. doi:10.1053/rmed.2000.0823.
doi: 10.1053/rmed.2000.0823. URL |
[64] |
Angely C, Ladant D, Planus E, et al. Functional and structural consequences of epithelial cell invasion by Bordetella pertussis adenylate cyclase toxin. PLoS One, 2020, 15(5): e0228606. doi:10.1371/journal.pone.0228606.
doi: 10.1371/journal.pone.0228606. URL |
[65] |
Banno A, Reddy AT, Lakshmi SP, et al. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond), 2020, 134(9): 1063-1079. doi:10.1042/CS20191309.
doi: 10.1042/CS20191309 pmid: 32369100 |
[66] |
Camargo LDN, Righetti RF, Aristóteles LRCRB, et al. Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS. Front Immunol, 2018, 8: 1835. doi:10.3389/fimmu.2017.01835.
doi: 10.3389/fimmu.2017.01835. URL |
[67] |
Hiramatsu Y, Suzuki K, Nishida T, et al. The Mechanism of Pertussis Cough Revealed by the Mouse-Coughing Model. mBio, 2022, 13(2): e0319721. doi:10.1128/mbio.03197-21.
doi: 10.1128/mbio.03197-21. |
[68] |
Ricciardolo FLM, Folkerts G, Folino A, et al. Bradykinin in asthma: Modulation of airway inflammation and remodelling. Eur J Pharmacol, 2018, 827: 181-188. doi:10.1016/j.ejphar.2018.03.017.
doi: S0014-2999(18)30164-X pmid: 29548973 |
[69] |
Kessie DK, Lodes N, Oberwinkler H, et al. Activity of trachealcytotoxin of Bordetella pertussis in a human tracheobronchial 3D tissuemodel. Front Cell Infect Microbiol, 2021, 10: 614994. doi:10.3389/fcimb.2020.614994.
doi: 10.3389/fcimb.2020.614994. URL |
[70] |
Locht C, Antoine R. The History of Pertussis Toxin. Toxins, 2021, 13(9): 623. doi:10.3390/toxins13090623.
doi: 10.3390/toxins13090623. URL |
[71] |
Hoonakker ME. In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity. Toxins (Basel), 2021, 13(8): 565. doi:10.3390/toxins13080565.
doi: 10.3390/toxins13080565. URL |
[72] |
Banafea GH, Bakhashab S, Alshaibi HF, et al. The role of human mast cells in allergy and asthma. Bioengineered, 2022, 13(3):7049-7064. doi:10.1080/21655979.2022.2044278.
doi: 10.1080/21655979.2022.2044278 pmid: 35266441 |
[73] |
Connelly CE, Sun Y, Carbonetti NH. Pertussis toxin exacerbates and prolongs airway inflammatory responses during Bordetella pertussis infection. Infection And Immunity, 2012, 80(12): 4317-4332. doi:10.1128/IAI.00808-12.
doi: 10.1128/IAI.00808-12 pmid: 23027529 |
[74] |
Carbonetti NH, Artamonova GV, Mays RM, et al. Pertussis toxin plays an early role in respiratory tract colonization by Bordetella pertussis. Infect Immun, 2003, 71(11): 6358-6366. doi:10.1128/IAI.71.11.6358-6366.2003.
doi: 10.1128/IAI.71.11.6358-6366.2003 pmid: 14573656 |
[75] |
Andreasen C, Carbonetti NH. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infect Immun, 2008, 76(11): 5139-5148. doi:10.1128/IAI.00895-08.
doi: 10.1128/IAI.00895-08 pmid: 18765723 |
[76] |
Carbonetti NH, Artamonova GV, Van Rooijen N, et al. Pertussis toxin targets airway macrophages to promote Bordetella pertussis infection of the respiratory tract. Infect Immun, 2007, 75(4): 1713-1720. doi:10.1128/IAI.01578-06.
doi: 10.1128/IAI.01578-06. pmid: 17242062 |
[77] |
Carbonetti NH. Immunomodulation in the pathogenesis of Bordetella pertussis infection and disease. Curr Opin Pharmacol, 2007, 7(3):272-278. doi:10.1016/j.coph.2006.12.004.
doi: 10.1016/j.coph.2006.12.004. pmid: 17418639 |
[78] |
Ennis DP, Cassidy JP, Mahon BP. Prior Bordetella pertussis infection modulates allergen priming and the severity of airway pathology in a murine model of allergic asthma. Clin Exp Allergy, 2004, 34(9):1488-1497. doi:10.1111/j.1365-2222.2004.02042.x
doi: 10.1111/j.1365-2222.2004.02042.x pmid: 15347385 |
[79] |
Sundqwist M, Trollfors B, Taranger J. Pertussis in infancy does not increase the risk of asthma. Pediatrics, 1998, 102(6):1496-1497. doi:10.1542/peds.102.6.1496.
doi: 10.1542/peds.102.6.1496. pmid: 9882235 |
[80] |
Kugelman A, Anabussi S, Sharon N, et al. The association between pertussis during intancy and childhood asthma. Harefuah, 2009, 148(2):80-83,140-141.
pmid: 19627033 |
[1] | Lou Nannan, Guo Jing, Ma Xiang, Gai Zhongtao. Research progress in pathological mechanism and treatment of cough variant asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 521-525. |
[2] | Zheng Huiwen, Li Feina, Shen Chen. Research progress of diagnosis and treatment of drug resistant tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 402-404. |
[3] | Zhang Chunhua, Chen Wei. Research progress on the epidemic and economic burden of tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 405-409. |
[4] | Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 328-333. |
[5] | Chen Muxing, Fan Xinxin, Chen Xiaohong, Lin Youfei, Huang Mingxiang, Chen Lizhou, Wu Di. Research progress of the clinical value of applying T lymphocyte subsets examination in COVID-19 patients [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(4): 343-346. |
[6] | ZHU Dan, CHEN Yan, SHUANG Qing-cui, ZENG Hui-hui. Clinical observation of patients with acute axcerbation of chronic obstructive pulmonary disease and patients with chronic obstructive pulmonary disease plus community-acquired pneumonia [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 118-124. |
[7] | WU Di, LIN Fen, CHEN Xiao-hong, LIN You-fei, HUANG Ming-xiang, CHEN Li-zhou. Convalescent plasma therapy for two cases of rapid progressing severe COVID-19 and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 33-43. |
[8] | SUN Shan-hua, LI Yan-yuan, TAO Li-ying, GAO Zhi-dong, ZHANG Hong-wei, XU Yan, CHEN Xi. Characteristics of report, registration and epidemiolog from children pulmonary tuberculosis in Beijing during 2011-2020 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 305-310. |
[9] | ZHOU Jie, QI Qing, CHEN Long, WU Rui, SHI Guang-shuo, DU He, LIU Ya-xin, XIONG Lei, WU Zhi-le, WU Guo-xia. Investigation of knowledge of Global Initiative for Asthma in physicians [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 189-192. |
[10] | GUO Qian, SHEN Chen. The progress of non-tuberculous mycobacterium disease in children [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 184-188. |
[11] | JIAO Wei-wei. Advances in molecular diagnostic techniques of tuberculosis in children [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 69-72. |
[12] | Rena·Abulaiti, Kelibiena·Tuerxun, Dilinuer·Wufuer. Research progress on correlation between bronchial asthma and psychological disorders [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 285-288. |
[13] | CHEN Yu,LI Qiao-si,FAN Li-chao,ZHU Ya-juan,LYU Yue-qiu.. Analysis of clinical features and outcome of treatment in 41 children with tuberculous meningitis [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 197-202. |
[14] | ZHANG Hong-hui,HUANG Wei.. Clinical effect of inhaled budesonide suspension for the treatment of asthma in children [J]. Journal of Tuberculosis and Lung Health, 2019, 8(3): 188-191. |
[15] | Tong ZHANG. Analysis of clinical treatment outcomes in 18 cases with severe bronchial asthma [J]. Journal of Tuberculosis and Lung Health, 2018, 7(1): 77-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||