Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (3): 262-266.doi: 10.3969/j.issn.2096-8493.20210037
• Review Articles • Previous Articles Next Articles
Received:
2021-05-11
Online:
2021-09-30
Published:
2021-09-24
Contact:
ZHANG Xiao-ju
E-mail:zhangxiaoju1010@henu.edu.cn
LIU Hai-yang, ZHANG Xiao-ju. Application of predictive model in early diagnosis of lung cancer[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(3): 262-266. doi: 10.3969/j.issn.2096-8493.20210037
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.20210037
[1] |
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019, 41(1):19-28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.008.
doi: 10.3760/cma.j.issn.0253-3766.2019.01.008 |
[2] |
National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med, 2011, 365(5):395-409. doi: 10.1056/NEJMoa1102873.
doi: 10.1056/NEJMoa1102873 URL |
[3] |
International Early Lung Cancer Action Program Investigators, Henschke CI, Yankelevitz DF, et al. Survival of patients with stage Ⅰ lung cancer detected on CT screening. N Engl J Med, 2006, 355(17):1763-1771. doi: 10.1056/NEJMoa060476.
doi: 10.1056/NEJMoa060476 URL |
[4] |
Patz EF Jr, Pinsky P, Gatsonis C, et al. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med, 2014, 174(2):269-274. doi: 10.1001/jamainternmed.2013.12738.
doi: 10.1001/jamainternmed.2013.12738 URL |
[5] |
中华医学会呼吸病学分会肺癌学组, 中国肺癌防治联盟专家组. 肺结节诊治中国专家共识(2018年版). 中华结核和呼吸杂志, 2018, 41(10):763-771. doi: 10.3760/cma.j.issn.1001-0939.2018.10.004.
doi: 10.3760/cma.j.issn.1001-0939.2018.10.004 |
[6] |
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 1997, 157(8):849-855.
pmid: 9129544 |
[7] |
Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2013, 143(5 Suppl):e93S-e120S. doi: 10.1378/chest.12-2351.
doi: 10.1378/chest.12-2351 URL |
[8] |
Swensen SJ, Silverstein MD, Edell ES, et al. Solitary pulmonary nodules: clinical prediction model versus physicians. Mayo Clin Proc, 1999, 74(4):319-329. doi: 10.4065/74.4.319.
doi: 10.4065/74.4.319 pmid: 10221459 |
[9] |
Herder GJ, van Tinteren H, Golding RP, et al. Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest, 2005, 128(4):2490-2496. doi: 10.1378/chest.128.4.2490.
doi: 10.1378/chest.128.4.2490 URL |
[10] |
McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med, 2013, 369(10):910-919. doi: 10.1056/NEJMoa1214726.
doi: 10.1056/NEJMoa1214726 URL |
[11] |
Winter A, Aberle DR, Hsu W, et al. External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data. Thorax, 2019, 74(6):551-563. doi: 10.1136/thoraxjnl-2018-212413.
doi: 10.1136/thoraxjnl-2018-212413 URL |
[12] |
Baldwin DR, Callister ME, Guideline Development Group. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax, 2015, 70(8):794-798. doi: 10.1136/thoraxjnl-2015-207221.
doi: 10.1136/thoraxjnl-2015-207221 pmid: 26135833 |
[13] |
Gould MK, Ananth L, Barnett PG, et al. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest, 2007, 131(2):383-388. doi: 10.1378/chest.06-1261.
doi: 10.1378/chest.06-1261 URL |
[14] |
Li Y, Chen KZ, Wang J. Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people. Clin Lung Cancer, 2011, 12(5):313-319. doi: 10.1016/j.cllc.2011.06.005.
doi: 10.1016/j.cllc.2011.06.005 URL |
[15] |
Zhang R, Tian P, Chen B, et al. Predicting Lung Cancer Risk of Incidental Solid and Subsolid Pulmonary Nodules in Different Sizes. Cancer Manag Res, 2020, 12:8057-8066. doi: 10.2147/CMAR.S256719.
doi: 10.2147/CMAR.S256719 pmid: 32943938 |
[16] |
Wu Z, Huang T, Zhang S, et al. A prediction model to evaluate the pretest risk of malignancy in solitary pulmonary nodules: evidence from a large Chinese southwestern population. J Cancer Res Clin Oncol, 2021, 147(1):275-285. doi: 10.1007/s00432-020-03408-2.
doi: 10.1007/s00432-020-03408-2 URL |
[17] |
Liu HY, Zhao XR, Chi M, et al. Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: a multivariable predictive model study. Chin Med J (Engl), 2021, 134(14):1687-1694. doi: 10.1097/CM9.0000000000001507.
doi: 10.1097/CM9.0000000000001507 |
[18] |
Yang B, Jhun BW, Shin SH, et al. Comparison of four models predicting the malignancy of pulmonary nodules: A single-center study of Korean adults. PLoS One, 2018, 13(7):e0201242. doi: 10.1371/journal.pone.0201242.
doi: 10.1371/journal.pone.0201242 URL |
[19] |
Song YS, Park CM, Park SJ, et al. Volume and mass doubling times of persistent pulmonary subsolid nodules detected in patients without known malignancy. Radiology, 2014, 273(1):276-284. doi: 10.1148/radiol.14132324.
doi: 10.1148/radiol.14132324 URL |
[20] |
齐琳琳, 王建卫, 杨琳, 等. 肺纯磨玻璃结节体积和质量倍增时间在鉴别浸润腺癌与微浸润腺癌及浸润前病变中的作用. 中华放射学杂志, 2017, 51(7):493-499. doi: 10.3760/cma.j.issn.1005-1201.2017.07.004.
doi: 10.3760/cma.j.issn.1005-1201.2017.07.004 |
[21] |
Yang DW, Zhang Y, Hong QY, et al. Role of a serum-based biomarker panel in the early diagnosis of lung cancer for a cohort of high-risk patients. Cancer, 2015, 121 Suppl 17:3113-3121. doi: 10.1002/cncr.29551.
doi: 10.1002/cncr.29551 URL |
[22] |
Yang D, Zhang X, Powell CA, et al. Probability of cancer in high-risk patients predicted by the protein-based lung cancer biomarker panel in China: LCBP study. Cancer, 2018, 124(2):262-270. doi: 10.1002/cncr.31020.
doi: 10.1002/cncr.31020 URL |
[23] |
Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early Detection of Lung Cancer, Guida F, Sun N, et al. Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncol, 2018, 4(10):e182078. doi: 10.1001/jamaoncol.2018.2078.
doi: 10.1001/jamaoncol.2018.2078 URL |
[24] |
Jett JR, Peek LJ, Fredericks L, et al. Audit of the autoantibody test, EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer, 2014, 83(1):51-55. doi: 10.1016/j.lungcan.2013.10.008.
doi: 10.1016/j.lungcan.2013.10.008 URL |
[25] |
Chapman CJ, Healey GF, Murray A, et al. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol, 2012, 33(5):1319-1326. doi: 10.1007/s13277-012-0379-2.
doi: 10.1007/s13277-012-0379-2 URL |
[26] |
Massion PP, Healey GF, Peek LJ, et al. Autoantibody Signature Enhances the Positive Predictive Power of Computed Tomography and Nodule-Based Risk Models for Detection of Lung Cancer. J Thorac Oncol, 2017, 12(3):578-584. doi: 10.1016/j.jtho.2016.08.143.
doi: S1556-0864(16)30928-5 pmid: 27615397 |
[27] |
Lin Y, Leng Q, Jiang Z, et al. A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules. Int J Cancer, 2017, 141(6):1240-1248. doi: 10.1002/ijc.30822.
doi: 10.1002/ijc.30822 URL |
[28] |
Chen X, Zhou F, Li X, et al. Folate Receptor-Positive Circulating Tumor Cell Detected by LT-PCR-Based Method as a Diagnostic Biomarker for Non-Small-Cell Lung Cancer. J Thorac Oncol, 2015, 10(8):1163-1171. doi: 10.1097/JTO.0000000000000606.
doi: 10.1097/JTO.0000000000000606 URL |
[29] |
中国肺癌防治联盟, 中华医学会呼吸病学分会肺癌学组, 中国医师协会呼吸医师分会肺癌工作委员会. 肺癌筛查与管理中国专家共识. 国际呼吸杂志, 2019, 39(21):1604-1615. doi: 10.3760/cma.j.issn.1673-436X.2019.21.002.
doi: 10.3760/cma.j.issn.1673-436X.2019.21.002 |
[30] |
Feng M, Ye X, Chen B, et al. Detection of circulating genetically abnormal cells using 4-color fluorescence in situ hybridization for the early detection of lung cancer. J Cancer Res Clin Oncol, 2021, 147(8):2397-2405. doi: 10.1007/s00432-021-03517-6.
doi: 10.1007/s00432-021-03517-6 URL |
[31] |
Kossenkov AV, Qureshi R, Dawany NB, et al. A Gene Expression Classifier from Whole Blood Distinguishes Benign from Malignant Lung Nodules Detected by Low-Dose CT. Cancer Res, 2019, 79(1):263-273. doi: 10.1158/0008-5472.CAN-18-2032.
doi: 10.1158/0008-5472.CAN-18-2032 pmid: 30487137 |
[32] |
Liang W, Zhao Y, Huang W, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics, 2019, 9(7):2056-2070. doi: 10.7150/thno.28119.
doi: 10.7150/thno.28119 URL |
[33] |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6):954-961. doi: 10.1038/s41591-019-0447-x.
doi: 10.1038/s41591-019-0447-x pmid: 31110349 |
[34] |
Ardila D, Kiraly AP, Bharadwaj S, et al. Author Correction: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(8):1319. doi: 10.1038/s41591-019-0536-x.
doi: 10.1038/s41591-019-0536-x pmid: 31253948 |
[35] |
Choi W, Oh JH, Riyahi S, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early detection of lung cancer. Med Phys, 2018, 45(4):1537-1549. doi: 10.1002/mp.12820.
doi: 10.1002/mp.12820 URL |
[36] | American College of Radiology. Lung CT Screening Reporting and Data System (Lung-RADS)[EB/OL]. [2021-05-11]. http://www.acr.org/Quality-Safety/Resources/LungRADS. |
[37] |
Wang X, Leader JK, Wang R, et al. Vasculature surrounding a nodule: A novel lung cancer biomarker. Lung Cancer, 2017, 114:38-43. doi: 10.1016/j.lungcan.2017.10.008.
doi: 10.1016/j.lungcan.2017.10.008 URL |
[38] |
Gu S, Wilson D, Tan J, et al. Pulmonary nodule registration: rigid or nonrigid? Med Phys, 2011, 38(7):4406-4414. doi: 10.1118/1.3602457.
doi: 10.1118/1.3602457 URL |
[39] |
Raghu VK, Zhao W, Pu J, et al. Feasibility of lung cancer prediction from low-dose CT scan and smoking factors using causal models. Thorax, 2019, 74(7):643-649. doi: 10.1136/thoraxjnl-2018-212638.
doi: 10.1136/thoraxjnl-2018-212638 URL |
[40] |
Bach PB, Kattan MW, Thornquist MD, et al. Variations in lung cancer risk among smokers. J Natl Cancer Inst, 2003, 95(6):470-478. doi: 10.1093/jnci/95.6.470.
doi: 10.1093/jnci/95.6.470 URL |
[41] |
Spitz MR, Hong WK, Amos CI, et al. A risk model for prediction of lung cancer. J Natl Cancer Inst, 2007, 99(9):715-726. doi: 10.1093/jnci/djk153.
doi: 10.1093/jnci/djk153 URL |
[1] | ZHANG Qun-cheng, LI Xiang-nan, XU Zhi-wei, SUN Guan-nan, YANG Hui-zhen, CHENG Dong-jun, ZHANG Xiao-ju. Diagnostic value of bronchoscopic cryobiopsy for diagnosing peripheral lung nodule [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 205-209. |
[2] | GUAN Fu-yuan, CHEN Zhi-hao, LI Wen-hui, YE Xiao-hua, ZHONG Xin-guang. Characteristics analysis of diagnosis delay among elderly tuberculosis patients in Dongguan City from 2009 to 2018 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 243-250. |
[3] | LI Xiang-nan, ZHANG Xiao-ju. Research progress of tumor ablation in lung cancer [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 256-261. |
[4] | YANG Hui-zhen, ZHANG Qun-cheng, ZHANG Xiao-ju. Advances in clinical application of endobronchial ultrasound-guided transbronchial needle aspiration [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 267-272. |
[5] | CUI Kai, ZHANG Xiao-ju. Research progress on the application of biomarkers in differential diagnosis of benign and malignant pulmonary nodules [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 273-276. |
[6] | XIN Wu-qun, CHEN Xiao, TANG Jin-xing, XU Gao-jun, ZHOU Zhen-qiang, HE Yi. Factors of persistent cough secondary to thoracoscopic resection of lung cancer [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 31-37. |
[7] | SUN Ming-lei, GUAN Li, LIANG Li-bo, ZHAO Juan, WANG Chen, ZOU Dan-dan. Bibliometric analysis of tuberculosis patient and care system delay based on Web of Science core database [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 62-68. |
[8] | ZHU Guo-feng, LIU Xiao-qing. The new era of systematic immunology of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 195-212. |
[9] | HUANG Jin-bao, LAN Chang-qing, LYU Xiao, CHEN Lu-lu, WANG Xin-hang, CHEN Yu-rong, HUANG Ming-xiang. Analysis of 23 cases of imported coronavirus disease 2019 [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 213-219. |
[10] | LIU Bo-fei, WANG Fang, LIU Bo-xia, MA Yu-jie, FENG Tao, XU Lin, ZHAO Gui-xia, HONG Yuan, LIU Guang-tian, ZHOU Pan, CAO Xiang-yuan. Analysis of characteristics of chest CT imaging and immune indexes in 84 COVID-19 patients [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 220-225. |
[11] | QIU Lei, YANG Ming, ZHANG Shao-yan, XUE Ling-na, TIAN Li-ming, LI Cui, WU Xian-wei, LU Zhen-hui, WU Ding-zhong. Exploration of medication rules of Chinese herb formulae for bronchiectasis based on modern literature and data mining [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 233-239. |
[12] | SU Bi-yi, ZHOU De-wang, MA Pin-yun, GUAN Ping, TAN Yao-ju. Diagnostic value of melting curve method in detecting resistance of Mycobacterium tuberculosis to rifampicin and isoniazid [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 245-248. |
[13] | DAI Zhi-song, LIN Shu-fang, WEI Shu-zhen, ZHOU Yin-fa. Analysis of epidemiological characteristics of pulmonary tuberculosis in Fujian Province from 2011 to 2019 [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 249-255. |
[14] | LI Yan-hong, TAO Xue-yong, XIE Ying, WANG Qiao-zhi, CHENG Ling-zhi, TANG Yi, XU Zu-hui, LIU Li-qin, TANG Xi-liang. Comparision of the work quality before and after reformation of tuberculosis control and prevention service system in Hu’nan Province [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(3): 256-261. |
[15] | SHEN Cong, JIAO Lei, BAI Lu, ZHANG Yi-li, GUO You-min. Analysis of the dynamic evolution of Chest CT lesions quality and peripheral blood lymphocyte count in patients with coronavirus disease 2019 [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 126-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||