Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (1): 33-40.doi: 10.19983/j.issn.2096-8493.20220145
• Original Articles • Previous Articles Next Articles
Zhou Yongfang, Fu Jiangquan(), Dong Wentao, Fang Donghai, Hu Xiaochun
Received:
2022-09-11
Online:
2023-02-20
Published:
2023-02-09
Contact:
Fu Jiangquan
E-mail:fjq95133@163.com
CLC Number:
Zhou Yongfang, Fu Jiangquan, Dong Wentao, Fang Donghai, Hu Xiaochun. Meta-analysis of efficacy and safety of inhaled nitric oxide in the treatment of severe and critical novel coronavirus pneumonia[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(1): 33-40. doi: 10.19983/j.issn.2096-8493.20220145
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220145
研究者及 发表时间 | 国家 | 平均年龄 (岁) | 性别 (男/女) | 入选标准 | iNO治疗方式、剂量及时间 | |||
---|---|---|---|---|---|---|---|---|
Robba等2021年3月[ | 意大利 | 62±8.8 | 5/4 | ARDS;机械通气;氧合指数<100;超声或CT显示肺动脉高压 | 经呼吸回路吸入;≥20mg/L;>1h每次;连续3d | |||
Cardinale等2020年8月[ | 英国 | 59±10.3 | 17/16 | ARDS;机械通气 | 具体量和时间未提 | |||
Lotz等2021年5月[ | 德国 | - | - | 重度ARDS;机械通气 | 经呼吸回路吸入;20mg/L;>30min | |||
DeGrado等2020年10月[ | 美国 | 61±12.0 | 24/14 | 中、重度ARDS;机械通气 | 经呼吸机回路吸入;20~80mg/L;>1h | |||
Abou-Arab等2020年11月[ | 法国 | - | - | 机械通气;氧合指数<150 | 经呼吸机回路吸入;10mg/L;15~30min | |||
Ferrari等2020年12月[ | 意大利 | 55±9.0 | - | 机械通气;氧合指数<100 | 经呼吸机回路吸入;20mg/L;30min | |||
Tavazzi等2020年8月[ | 意大利 | 66±7.4 | 15/1 | 机械通气;氧合指数<100;4例患者心脏超声诊断为肺心病 | 经呼吸机回路吸入;20~30mg/L;30min | |||
Garfield等2021年2月[ | 英国 | 57.6±8.1 | 28/7 | ARDS;机械通气;氧合指数<100 | 经呼吸机回路吸入;20~40mg/L;平均治疗时间146.4h | |||
Bagate等2020年11月[ | 法国 | 60±14.8 | 7/3 | ARDS;机械通气;氧合指数<150 | 经呼吸机回路吸入;10mg/L;30min | |||
Ziehr等2021年1月[ | 美国 | 60±14.8 | - | ARDS;机械通气;氧合指数<150 | 经呼吸机回路吸入;20~80mg/L;16h | |||
研究者及 发表时间 | 国家 | 平均年龄 (岁) | 性别 (男/女) | 入选标准 | iNO治疗方式、剂量及时间 | |||
Laghlam等2021年7月[ | 法国 | 71.8±8.7 | 9/3 | ARDS;机械通气;氧合指数<200;排除肺动脉高压 | 经呼吸机回路吸入;10mg/L;30min;持续时间平均50.2h | |||
Feng等2021年11月[ | 中国 | 66.4±2.6 | 5/0 | 机械通气;肺动脉收缩压>50mmHg | 经呼吸机回路吸入;10~20mg/L;具体时间不确定 | |||
Moni等2021年4月[ | 印度 | 59.1±10.5 | 18/7 | 自主呼吸;血氧饱和度<94%;呼吸频率>24次/min | 面罩吸入;30min内由10mg/L逐渐升至80mg/L;每次30min,q12h,持续3d | |||
Chandel等2021年9月[ | 美国 | 57±13.0 | 180/92 | 急性呼吸衰竭需行高流量氧疗 | 经高流量管路吸入;20~40mg/L;平均治疗时间88h | |||
Longobardo等2020年1月[ | 英国 | 59±10.3 | 13/7 | ARDS;机械通气 | 具体量和时间未提 |
[1] |
Rendana M, Idris WMR. New COVID-19 variant (B.1.1.7): Forecasting the occasion of virus and the related meteorological factors. J Infect Public Health, 2021, 14(10):1320-1327. doi:10.1016/j.jiph.2021.05.019.
doi: 10.1016/j.jiph.2021.05.019. URL |
[2] |
Tang JW, Tambyah PA, Hui DS. Emergence of a new SARS-CoV-2 variant in the UK. J Infect, 2021, 82(4):e27-e28. doi:10.1016/j.jinf.2020.12.024.
doi: 10.1016/j.jinf.2020.12.024. |
[3] |
Ye Z, Zhang Y, Wang Y, et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol,2020, 30(8):4381-4389. doi:10.1007/s00330-020-06801-0.
doi: 10.1007/s00330-020-06801-0. URL |
[4] |
Varga Z, Flammer AJ, Steiger P. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395:1417-1418. doi:10.1016/S0140-6736(20)30937-5.
doi: 10.1016/S0140-6736(20)30937-5. URL |
[5] |
Batah SS, Fabro AT. Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians. Respir Med, 2021, 176: 106239. doi:10.1016/j.rmed.2020.106239.
doi: 10.1016/j.rmed.2020.106239. URL |
[6] |
Rossaint R, Falke KJ, López F, et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med, 1993, 328(6):399-405. doi:10.1056/NEJM199302113280605.
doi: 10.1056/NEJM199302113280605. URL |
[7] |
Hill NS, Preston IR, Roberts KE. I nhaled Therapies for Pulmonary Hypertension. Respir Care, 2015, 60(6):794-805. doi:10.4187/respcare.03927.
doi: 10.4187/respcare.03927. URL |
[8] |
Adhikari NK, Burns KE, Friedrich JO, et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and Meta-analysis. BMJ, 2007, 334(7597):779. doi:10.1136/bmj.39139.716794.55.
doi: 10.1136/bmj.39139.716794.55. URL |
[9] |
Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes. Intensive Care Med, 2020, 46(6):1099-1102. doi:10.1007/s00134-020-06033-2.
doi: 10.1007/s00134-020-06033-2 pmid: 32291463 |
[10] |
Kommoss FKF, Schwab C, Tavernar L, et al. The Pathology of Severe COVID-19-Related Lung Damage. Dtsch Arztebl Int, 2020, 117(29/30):500-506. doi:10.3238/arztebl.2020.0500.
doi: 10.3238/arztebl.2020.0500. |
[11] |
Winchester S, John S, Jabbar K, et al. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection. J Infect, 2021, 83(2):237-279. doi:10.1016/j.jinf.2021.05.009.
doi: 10.1016/j.jinf.2021.05.009 pmid: 33992687 |
[12] |
Moni M, Madathil T, Sathyapalan DT, et al. A Feasibility Trial to Evaluate the Composite Efficacy of Inhaled Nitric Oxide in the Treatment of Covid 19 Pneumonia:Impact on Viral Load and Clinical Outcomes. medRxiv, 2021:2021.04.15.21255300. doi:10.1101/2021.04.15.21255300.
doi: 10.1101/2021.04.15.21255300. |
[13] | World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance. Geneva:World Health Organization,2020. |
[14] |
Higgins JP, Thompson SG. Quantifying heterogeneity in a Meta-analysis. Stat Med, 2002, 21(11): 1539-1558. doi:10.1002/sim.1186.
doi: 10.1002/sim.1186 pmid: 12111919 |
[15] |
Winchester S, John S, Jabbar K, et al. Clinical efficacy of nitric oxide nasal spray (NONS) for the treatment of mild COVID-19 infection. J Infect, 2021, 83(2):237-279. doi:10.1016/j.jinf.2021.05.009.
doi: 10.1016/j.jinf.2021.05.009 pmid: 33992687 |
[16] |
Safaee Fakhr B, Wiegand SB, Pinciroli R, et al. High Concentrations of Nitric Oxide Inhalation Therapy in Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19). Obstet Gynecol,2020, 136(6):1109-1113. doi:10.1097/AOG.0000000000004128.
doi: 10.1097/AOG.0000000000004128. URL |
[17] |
Parikh R, Wilson C, Weinberg J, et al. Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients. Ther Adv Respir Dis, 2020, 14: 1753466620933510. doi:10.1177/1753466620933510.
doi: 10.1177/1753466620933510. |
[18] |
Wiegand SB, Safaee Fakhr B, Carroll RW, et al. Rescue Treatment With High-Dose Gaseous Nitric Oxide in Spontaneously Breathing Patients With Severe Coronavirus Disease 2019. Crit Care Explor, 2020, 2(11):e0277. doi:10.1097/CCE.0000000000000277.
doi: 10.1097/CCE.0000000000000277. |
[19] |
Safaee Fakhr B, Di Fenza R, Gianni S, et al. Inhaled high dose nitric oxide is a safe and effective respiratory treatment in spontaneous breathing hospitalized patients with COVID-19 pneumonia. Nitric Oxide, 2021, 116:7-13. doi:10.1016/j.niox.2021.08.003.
doi: 10.1016/j.niox.2021.08.003 pmid: 34400339 |
[20] |
Chandel A, Patolia S, Ahmad K, et al. Inhaled Nitric Oxide via High-Flow Nasal Cannula in Patients with Acute Respiratory Failure Related to COVID-19. Clin Med Insights Circ Respir Pulm Med, 2021, 15: 11795484211047065. doi:10.1177/11795484211047065.
doi: 10.1177/11795484211047065. |
[21] |
Feng WX, Yang Y, Wen J, et al. Implication of inhaled nitric oxide for the treatment of critically ill COVID-19 patients with pulmonary hypertension. ESC Heart Fail, 2021, 8(1):714-718. doi:10.1002/ehf2.13023.
doi: 10.1002/ehf2.13023 pmid: 33205620 |
[22] |
Robba C, Ball L, Battaglini D, et al. Early effects of ventilatory rescue therapies on systemic and cerebral oxygenation in mechanically ventilated COVID-19 patients with acute respiratory distress syndrome: a prospective observational study. Crit Care, 2021, 25(1):111. doi:10.1186/s13054-021-03537-1.
doi: 10.1186/s13054-021-03537-1. URL |
[23] |
Cardinale M, Esnault P, Cotte J, et al. Effect of almitrine bismesylate and inhaled nitric oxide on oxygenation in COVID-19 acute respiratory distress syndrome. Anaesth Crit Care Pain Med, 2020, 39(4): 471-472. doi:10.1016/j.accpm.2020.05.014.
doi: 10.1016/j.accpm.2020.05.014. URL |
[24] |
Lotz C, Muellenbach RM, Meybohm P, et al. Effects of inhaled nitric oxide in COVID-19-induced ARDS-Is it worthwhile? Acta Anaesthesiol Scand, 2021, 65(5):629-632. doi:10.1111/aas.13757.Epub2020Dec20.
doi: 10.1111/aas.13757.Epub2020Dec20. URL |
[25] |
DeGrado JR, Szumita PM, Schuler BR, et al. Evaluation of the Efficacy and Safety of Inhaled Epoprostenol and Inhaled Nitric Oxide for Refractory Hypoxemia in Patients With Coronavirus Disease 2019. Crit Care Explor, 2020, 2(10): e0259. doi:10.1097/CCE.0000000000000259.
doi: 10.1097/CCE.0000000000000259 pmid: 33134949 |
[26] |
Abou-Arab O, Huette P, Debouvries F, et al. Inhaled nitric oxide for critically ill Covid-19 patients: a prospective study. Crit Care, 2020, 24(1):645. doi:10.1186/s13054-020-03371-x.
doi: 10.1186/s13054-020-03371-x. URL |
[27] |
Ferrari M, Santini A, Protti A, et al. Inhaled nitric oxide in mechanically ventilated patients with COVID-19. J Crit Care, 2020, 60:159-160. doi:10.1016/j.jcrc.2020.08.007.
doi: S0883-9441(20)30651-1 pmid: 32814271 |
[28] |
Tavazzi G, Pozzi M, Mongodi S, et al. Inhaled nitric oxide in patients admitted to intensive care unit with COVID-19 pneumonia. Crit Care, 2020, 24(1):508. doi:10.1186/s13054-020-03222-9.
doi: 10.1186/s13054-020-03222-9. URL |
[29] |
Garfield B, McFadyen C, Briar C, et al. Potential for persona-lised application of inhaled nitric oxide in COVID-19 pneumonia. Br J Anaesth, 2021, 126(2):e72-e75. doi:10.1016/j.bja.2020.11.006.
doi: 10.1016/j.bja.2020.11.006. |
[30] |
Bagate F, Tuffet S, Masi P, et al. Rescue therapy with inhaled nitric oxide and almitrine in COVID-19 patients with severe acute respiratory distress syndrome. Ann Intensive Care, 2020, 10(1):151. doi:10.1186/s13613-020-00769-2.
doi: 10.1186/s13613-020-00769-2 pmid: 33150525 |
[31] |
Ziehr DR, Alladina J, Wolf ME, et al. Respiratory Physiology of Prone Positioning With and Without Inhaled Nitric Oxide Across the Coronavirus Disease 2019 Acute Respiratory Distress Syndrome Severity Spectrum. Crit Care Explor,2021, 3(6):e0471. doi:10.1097/CCE.0000000000000471.
doi: 10.1097/CCE.0000000000000471. |
[32] |
Laghlam D, Rahoual G, Malvy J, et al. Use of Almitrine and Inhaled Nitric Oxide in ARDS Due to COVID-19. Front Med (Lausanne), 2021, 8:655763. doi:10.3389/fmed.2021.655763.
doi: 10.3389/fmed.2021.655763. |
[33] |
Longobardo A, Montanari C, Shulman R, et al. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome. Br J Anaesth, 2021, 126(1):e44-e46. doi:10.1016/j.bja.2020.10.011.
doi: 10.1016/j.bja.2020.10.011. |
[34] |
Sherlock LG, Wright CJ, Kinsella JP, et al. Inhaled nitric oxide use in neonates: Balancing what is evidence-based and what is physiologically sound. Nitric Oxide, 2020, 95:12-16. doi:10.1016/j.niox.2019.12.001.
doi: S1089-8603(19)30140-5 pmid: 31866361 |
[35] |
Gebistorf F, Karam O, Wetterslev J, et al. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev, 2016, 2016(6): CD002787. doi:10.1002/14651858.CD002787.pub3.
doi: 10.1002/14651858.CD002787.pub3. |
[36] |
Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis, 2004, 39(10):1531-1535. doi:10.1086/425357.
doi: 10.1086/425357. pmid: 15546092 |
[37] |
Akerström S, Gunalan V, Keng CT, et al. Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected. Virology, 2009, 395(1):1-9. doi:10.1016/j.virol.2009.09.007.
doi: 10.1016/j.virol.2009.09.007 pmid: 19800091 |
[38] |
Adhikari NK, Dellinger RP, Lundin S, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systematic review and Meta-analysis. Crit Care Med, 2014, 42(2):404-412. doi:10.1097/CCM.0b013e3182a27909.
doi: 10.1097/CCM.0b013e3182a27909 pmid: 24132038 |
[39] |
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med,2020, 382(18):1708-1720. doi:10.1056/NEJMoa2002032.
doi: 10.1056/NEJMoa2002032. URL |
[40] |
Hedenstierna G, Chen L, Hedenstierna M, et al. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19. Nitric Oxide, 2020, 103(10):1-3. doi:10.1016/j.niox.2020.06.005.
doi: 10.1016/j.niox.2020.06.005. URL |
[41] |
Frostell CG, Hedenstierna G. Nitric oxide and COVID-19: Dose, timing and how to administer it might be crucial. Acta Anaesthesiol Scand, 2021, 65(5):576-577. doi:10.1111/aas.13788.
doi: 10.1111/aas.13788 pmid: 33533477 |
[42] |
Jung K, Gurnani A, Renukaradhya GJ, et al. Nitric oxide is elicited and inhibits viral replication in pigs infected with porcine respiratory coronavirus but not porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol, 2010, 136(3):335-339. doi:10.1016/j.vetimm.2010.03.022.
doi: 10.1016/j.vetimm.2010.03.022. URL |
[43] |
Runer T, Cervin A, Lindberg S, et al. Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg, 1998, 119(3):278-287. doi:10.1016/S0194-5998(98)70063-4.
doi: 10.1016/S0194-5998(98)70063-4. URL |
[44] |
Nagaki M, Shimura MN, Irokawa T, et al. Nitric oxide regulation of glycoconjugate secretion from feline and human airways in vitro. Respir Physiol, 1995, 102(1):89-95. doi:10.1016/0034-5687(95)00042-c.
doi: 10.1016/0034-5687(95)00042-c. pmid: 8610212 |
[1] | Wang Mengmeng, Sha Li, Li Xinyue, Tang Suyao. Meta analysis of the incidence of peripheral neuritis during the treatment of multidrug-resistant tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(1): 41-47. |
[2] | WU Di, LIN Fen, CHEN Xiao-hong, LIN You-fei, HUANG Ming-xiang, CHEN Li-zhou. Convalescent plasma therapy for two cases of rapid progressing severe COVID-19 and literature review [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(1): 33-43. |
[3] | WU Di, FAN Xin-xin, SHEN Jian-shan, LIN You-fei, CHEN Xiao-hong, HUANG Ming-xiang, CHEN Li-zhou. Diagnostic value of combined detection of coagulation screening indicators and D-dimer in clinical classification of COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(4): 355-360. |
[4] | WU Jing. Four-wheel-driven accelerated prevention and control of chronic pulmonary diseases in the post-epidemic era [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 202-204. |
[5] | ZHOU Wei, ZHANG Shao-yan, WU Xian-wei, GUO Xiao-yan, LU Zhen-hui. Meta analysis of pulmonary multidrug-resistant bacterial infection treated by combination of traditional Chinese and Western medicine [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(1): 43-49. |
[6] | LI Gang, XIE Jian-ping. Progresses on the SARS-CoV-2 RNA-dependent RNA polymerase and potential anti-SARS-CoV-2 inhibitors [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(1): 6-10. |
[7] | LIU Di. Virus genome, the direct way to know the SARS-CoV-2 virus [J]. Journal of Tuberculosis and Lung Health, 2020, 9(1): 16-18. |
[8] | SHI Guo-chao, WANG Lin-lin. Progress in diagnosis and treatment of bronchial asthma [J]. Journal of Tuberculosis and Lung Health, 2012, 1(1): 27-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||