Journal of Tuberculosis and Lung Disease ›› 2020, Vol. 1 ›› Issue (1): 71-77.doi: 10.3969/j.issn.2096-8493.2020.01.015
• Review Articles • Previous Articles Next Articles
HU Xiao-guang, CHEN Can-can, ZHANG Ya-nan, MA Jun-yang, CHEN Wei()
Received:
2020-03-13
Online:
2020-06-30
Published:
2020-07-07
Contact:
CHEN Wei
E-mail:chenwei@zhifeishengwu.com
HU Xiao-guang, CHEN Can-can, ZHANG Ya-nan, MA Jun-yang, CHEN Wei. The main immune cells against Mycobacterium tuberculosis infection and their mechanisms[J]. Journal of Tuberculosis and Lung Disease , 2020, 1(1): 71-77. doi: 10.3969/j.issn.2096-8493.2020.01.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2020.01.015
[1] |
Sonnenberg P, Glynn JR, Fielding K, et al. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis, 2005,191(2):150-158. doi: 10.1086/426827.
doi: 10.1086/426827 URL pmid: 15609223 |
[2] |
Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 2014,58(4):470-480. doi: 10.1093/cid/cit790.
doi: 10.1093/cid/cit790 URL |
[3] |
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019,7(4). doi: 10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1128/microbiolspec.GPP3-0053-2018 URL pmid: 31298205 |
[4] |
Philips JA, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol, 2012,7:353-384. doi: 10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1146/annurev-pathol-011811-132458 URL pmid: 22054143 |
[5] |
Fratti RA, Chua J, Vergne I, et al. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A, 2003,100(9):5437-5442. doi: 10.1073/pnas.0737613100.
doi: 10.1073/pnas.0737613100 URL pmid: 12702770 |
[6] |
Cowley S, Ko M, Pick N, et al. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol, 2004,52(6):1691-1702. doi: 10.1111/j.1365-2958.2004.04085.x.
doi: 10.1111/j.1365-2958.2004.04085.x URL pmid: 15186418 |
[7] |
Schnettger L, Rodgers A, Repnik U, et al. A Rab20-Dependent Membrane Trafficking Pathway Controls M.tuberculosis Replication by Regulating Phagosome Spaciousness and Integrity. Cell Host Microbe, 2017,21(5): 619-628.e5. doi: 10.1016/j.chom.2017.04.004.
doi: 10.1016/j.chom.2017.04.004 URL pmid: 28494243 |
[8] |
Houben D, Demangel C, van Ingen J, et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol, 2012,14(8):1287-1298. doi: 10.1111/j.1462-5822.2012.01799.x.
doi: 10.1111/j.1462-5822.2012.01799.x URL |
[9] |
De Leon J, Jiang G, Ma Y, et al. Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis. J Biol Chem, 2012,287(53):44184-44191. doi: 10.1074/jbc.M112.420869.
doi: 10.1074/jbc.M112.420869 URL pmid: 23150662 |
[10] |
Tufariello JM, Chapman JR, Kerantzas CA, et al. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A, 2016,113(3):E348-357. doi: 10.1073/pnas.1523321113.
doi: 10.1073/pnas.1523321113 URL pmid: 26729876 |
[11] |
Hou JM, D’Lima NG, Rigel NW, et al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol, 2008,190(14):4880-4887. doi: 10.1128/JB.00412-08.
doi: 10.1128/JB.00412-08 URL pmid: 18487341 |
[12] |
Sullivan JT, Young EF, McCann JR, et al. The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun, 2012,80(3):996-1006. doi: 10.1128/IAI.05987-11.
doi: 10.1128/IAI.05987-11 URL |
[13] |
Jayachandran R, Sundaramurthy V, Combaluzier B, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell, 2007,130(1):37-50. doi: 10.1016/j.cell.2007.04.043.
doi: 10.1016/j.cell.2007.04.043 URL pmid: 17632055 |
[14] |
Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science, 1999,285(5428):732-736. doi: 10.1126/science.285.5428.732.
doi: 10.1126/science.285.5428.732 URL pmid: 10426995 |
[15] |
Firmani MA, Riley LW. Reactive nitrogen intermediates have a bacteriostatic effect on Mycobacterium tuberculosis in vitro. J Clin Microbiol, 2002,40(9):3162-3166. doi: 10.1128/jcm.40.9.3162-3166.2002.
doi: 10.1128/jcm.40.9.3162-3166.2002 URL pmid: 12202547 |
[16] |
Jung JY, Madan Lala R, Georgieva M, et al. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun, 2013,81(9):3198-3209. doi: 10.1128/IAI.00611-13.
doi: 10.1128/IAI.00611-13 URL |
[17] |
Wang CH, Lin HC, Liu CY, et al. Upregulation of inducible nitric oxide synthase and cytokine secretion in peripheral blood monocytes from pulmonary tuberculosis patients. Int J Tuberc Lung Dis, 2001,5(3):283-291.
URL pmid: 11326829 |
[18] |
Esin S, Counoupas C, Aulicino A, et al. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol, 2013,77(6):460-469. doi: 10.1111/sji.12052.
doi: 10.1111/sji.12052 URL pmid: 23578092 |
[19] |
Vankayalapati R, Garg A, Porgador A, et al. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol, 2005,175(7):4611-4617. doi: 10.4049/jimmunol.175.7.4611.
doi: 10.4049/jimmunol.175.7.4611 URL pmid: 16177106 |
[20] |
Schierloh P, Alemán M, Yokobori N, et al. NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology, 2005,116(4):541-552. doi: 10.1111/j.1365-2567.2005.02259.x.
doi: 10.1111/j.1365-2567.2005.02259.x URL pmid: 16313368 |
[21] |
Vankayalapati R, Klucar P, Wizel B, et al. NK cells regulate CD8 + T cell effector function in response to an intracellular pathogen . J Immunol, 2004,172(1):130-137. doi: 10.4049/jimmunol.172.1.130.
doi: 10.4049/jimmunol.172.1.130 URL pmid: 14688318 |
[22] |
Zhang R, Zheng X, Li B, et al. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis. J Immunol, 2006,176(4):2610-2616. doi: 10.4049/jimmunol.176.4.2610.
doi: 10.4049/jimmunol.176.4.2610 URL pmid: 16456023 |
[23] |
Venkatasubramanian S, Cheekatla S, Paidipally P, et al. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol, 2017,10(4):1031-1042. doi: 10.1038/mi.2016.105.
doi: 10.1038/mi.2016.105 URL pmid: 27924822 |
[24] |
Novikov A, Cardone M, Thompson R, et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J Immunol, 2011,187(5):2540-2547. doi: 10.4049/jimmunol.1100926.
doi: 10.4049/jimmunol.1100926 URL pmid: 21784976 |
[25] |
McNab FW, Ewbank J, Howes A, et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol, 2014,193(7):3600-3612. doi: 10.4049/jimmunol.1401088.
doi: 10.4049/jimmunol.1401088 URL pmid: 25187652 |
[26] |
Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med, 2001,345(15):1098-1104. doi: 10.1056/NEJMoa011110.
doi: 10.1056/NEJMoa011110 URL pmid: 11596589 |
[27] |
Mohan VP, Scanga CA, Yu K, et al. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun, 2001,69(3):1847-1855. doi: 10.1128/IAI.69.3.1847-1855.2001.
doi: 10.1128/IAI.69.3.1847-1855.2001 URL pmid: 11179363 |
[28] |
Mogues T, Goodrich ME, Ryan L, et al. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med, 2001,193(3):271-280. doi: 10.1084/jem.193.3.271.
doi: 10.1084/jem.193.3.271 URL pmid: 11157048 |
[29] |
Gallegos AM, Pamer EG, Glickman MS. Delayed protection by ESAT-6-specific effector CD4 + T cells after airborne M.tuberculosis infection . J Exp Med, 2008,205(10):2359-2368. doi: 10.1084/jem.20080353.
doi: 10.1084/jem.20080353 URL pmid: 18779346 |
[30] |
Sakai S, Kauffman KD, Schenkel JM, et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol, 2014,192(7):2965-2969. doi: 10.4049/jimmunol.1400019.
doi: 10.4049/jimmunol.1400019 URL pmid: 24591367 |
[31] |
Sakai S, Kauffman KD, Sallin MA, et al. CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease. PLoS Pathog, 2016,12(5):e1005667. doi: 10.1371/journal.ppat.1005667.
doi: 10.1371/journal.ppat.1005667 URL pmid: 27244558 |
[32] |
李美忠, 邱振纲, 张明霞, 等. 结核病患者体内抗原特异性多功能辅助性T细胞1的检测及分析. 结核病与肺部健康杂志, 2014,3(1):11-14. doi: 10.3969/j.issn.2095-3755.2014.01.003.
doi: 10.3969/j.issn.2095-3755.2014.01.003 URL |
[33] |
Sousa AO, Mazzaccaro RJ, Russell RG, et al. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A, 2000,97(8):4204-4208. doi: 10.1073/pnas.97.8.4204.
doi: 10.1073/pnas.97.8.4204 URL pmid: 10760288 |
[34] |
Chen CY, Huang D, Wang RC, et al. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog, 2009,5(4):e1000392. doi: 10.1371/journal.ppat.1000392.
doi: 10.1371/journal.ppat.1000392 URL pmid: 19381260 |
[35] |
van Pinxteren LA, Cassidy JP, Smedegaard BH, et al. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol, 2000,30(12):3689-3698. doi: 10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4.
doi: 10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4 URL pmid: 11169412 |
[36] |
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol, 2015,37(3):239-249. doi: 10.1007/s00281-015-0490-8.
doi: 10.1007/s00281-015-0490-8 URL pmid: 25917388 |
[37] |
Canaday DH, Wilkinson RJ, Li Q, et al. CD4 + and CD8 + T cells kill intracellular Mycobacterium tuberculosis by a perforin and Fas/Fas ligand-independent mechanism . J Immunol, 2001,167(5):2734-2742. doi: 10.4049/jimmunol.167.5.2734.
doi: 10.4049/jimmunol.167.5.2734 URL pmid: 11509617 |
[38] |
Shams H, Klucar P, Weis SE, et al. Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4 + and CD8 + T cells in the context of multiple HLA alleles . J Immunol, 2004,173(3):1966-1977. doi: 10.4049/jimmunol.173.3.1966.
doi: 10.4049/jimmunol.173.3.1966 URL pmid: 15265931 |
[39] |
Liu W, Xu Y, Yan J, et al. Ag85B synergizes with ESAT-6 to induce efficient and long-term immunity of C57BL/6 mice primed with recombinant Bacille Calmette-Guerin. Exp Ther Med, 2017,13(1):208-214. doi: 10.3892/etm.2016.3944.
doi: 10.3892/etm.2016.3944 URL pmid: 28123491 |
[40] |
Caccamo N, Meraviglia S, La Mendola C, et al. Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens. J Immunol, 2006,177(3):1780-1785. doi: 10.4049/jimmunol.177.3.1780.
doi: 10.4049/jimmunol.177.3.1780 URL pmid: 16849488 |
[41] |
Lewinsohn DM, Swarbrick GM, Cansler ME, et al. Human Mycobacterium tuberculosis CD8 T Cell Antigens/Epitopes Identified by a Proteomic Peptide Library. PLoS One, 2013,8(6):e67016. doi: 10.1371/journal.pone.0067016.
doi: 10.1371/journal.pone.0067016 URL pmid: 23805289 |
[42] |
Mahnke YD, Brodie TM, Sallusto F, et al. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol, 2013,43(11):2797-2809. doi: 10.1002/eji.201343751.
doi: 10.1002/eji.201343751 URL pmid: 24258910 |
[43] |
Adekambi T, Ibegbu CC, Kalokhe AS, et al. Distinct effector memory CD4 + T cell signatures in latent Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved tuberculosis . PLoS One, 2012,7(4):e36046. doi: 10.1371/journal.pone.0036046.
doi: 10.1371/journal.pone.0036046 URL pmid: 22545156 |
[44] |
Lindestam Arlehamn CS, Gerasimova A, Mele F, et al. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3 +CCR6 + Th1 subset . PLoS Pathog, 2013,9(1):e1003130. doi: 10.1371/journal.ppat.1003130.
doi: 10.1371/journal.ppat.1003130 URL pmid: 23358848 |
[45] |
Rozot V, Vigano S, Mazza Stalder J, et al. Mycobacterium tuberculosis-specific CD8 + T cells are functionally and phenotypically different between latent infection and active disease . Eur J Immunol, 2013,43(6):1568-1577. doi: 10.1002/eji.201243262.
doi: 10.1002/eji.201243262 URL pmid: 23456989 |
[46] |
Kamath AB, Behar SM. Anamnestic responses of mice following Mycobacterium tuberculosis infection. Infect Immun, 2005,73(9):6110-6118. doi: 10.1128/IAI.73.9.6110-6118.2005.
doi: 10.1128/IAI.73.9.6110-6118.2005 URL pmid: 16113332 |
[47] |
Achkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev, 2015,264(1):167-181. doi: 10.1111/imr.12276.
doi: 10.1111/imr.12276 URL pmid: 25703559 |
[48] |
Kozakiewicz L, Phuah J, Flynn J, et al. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol, 2013,783:225-250. doi: 10.1007/978-1-4614-6111-1_12.
doi: 10.1007/978-1-4614-6111-1_12 URL pmid: 23468112 |
[49] |
Cliff JM, Lee JS, Constantinou N, et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis, 2013,207(1):18-29. doi: 10.1093/infdis/jis499.
doi: 10.1093/infdis/jis499 URL pmid: 22872737 |
[50] |
Li H, Wang XX, Wang B, et al. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2017,114(19):5023-5028. doi: 10.1073/pnas.1611776114.
doi: 10.1073/pnas.1611776114 URL pmid: 28438994 |
[51] |
Kunnath Velayudhan S, Salamon H, Wang HY, et al. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A, 2010,107(33):14703-14708. doi: 10.1073/pnas.1009080107.
doi: 10.1073/pnas.1009080107 URL pmid: 20668240 |
[52] |
Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol, 2007,178(11):7222-7234. doi: 10.4049/jimmunol.178.11.7222.
doi: 10.4049/jimmunol.178.11.7222 URL pmid: 17513771 |
[53] |
Kozakiewicz L, Chen Y, Xu J, et al. B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog, 2013,9(7):e1003472. doi: 10.1371/journal.ppat.1003472.
doi: 10.1371/journal.ppat.1003472 URL pmid: 23853593 |
[54] |
Maglione PJ, Xu J, Casadevall A, et al. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol, 2008,180(5):3329-3338. doi: 10.4049/jimmunol.180.5.3329.
doi: 10.4049/jimmunol.180.5.3329 URL pmid: 18292558 |
[55] |
Meuter S, Eberl M, Moser B. Prolonged antigen survival and cytosolic export in cross-presenting human gammadelta T cells. Proc Natl Acad Sci U S A, 2010,107(19):8730-8735. doi: 10.1073/pnas.1002769107.
doi: 10.1073/pnas.1002769107 URL pmid: 20413723 |
[56] |
Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol, 2010,10(7):467-478. doi: 10.1038/nri2781.
doi: 10.1038/nri2781 URL pmid: 20539306 |
[57] | 王克强, 侯彦强, 李雁. 一种简单快速扩增和获取外周血γδT细胞的方法. 中国实验血液学杂志, 2004,12(3):372-374. |
[58] |
Gossman W, Oldfield E. Quantitative structure—activity relations for gammadelta T cell activation by phosphoantigens. J Med Chem, 2002,45(22):4868-4874. doi: 10.1021/jm020224n.
doi: 10.1021/jm020224n URL pmid: 12383012 |
[59] |
Allison TJ, Garboczi DN. Structure of gammadelta T cell receptors and their recognition of non-peptide antigens. Mol Immunol, 2002,38(14):1051-1061. doi: 10.1016/s0161-5890(02)00034-2.
doi: 10.1016/s0161-5890(02)00034-2 URL pmid: 11955597 |
[60] |
Spencer CT, Abate G, Blazevic A, et al. Only a subset of phosphoantigen-responsive gamma9delta2 T cells mediate protective tuberculosis immunity. J Immunol, 2008,181(7):4471-4484. doi: 10.4049/jimmunol.181.7.4471.
doi: 10.4049/jimmunol.181.7.4471 URL pmid: 18802050 |
[61] |
van der Fits L, Sandberg Y, Darzentas N, et al. A restricted clonal T-cell receptor αβ repertoire in Sézary syndrome is indicative of superantigenic stimulation. Br J Dermatol, 2011,165(1):78-84. doi: 10.1111/j.1365-2133.2011.10308.x.
doi: 10.1111/j.1365-2133.2011.10308.x URL pmid: 21410672 |
[62] |
Dieli F, Troye Blomberg M, Ivanyi J, et al. Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol, 2000,30(5):1512-1519. doi: 10.1002/(SICI)1521-4141(200005)30:5<1512::AID-IMMU1512>3.0.CO;2-3.
doi: 10.1002/(SICI)1521-4141(200005)30:5<1512::AID-IMMU1512>3.0.CO;2-3 URL pmid: 10820400 |
[63] |
Shen Y, Zhou D, Qiu L, et al. Adaptive immune response of Vgamma2Vdelta2 + T cells during mycobacterial infections . Science, 2002,295(5563):2255-2258.doi: 10.1126/science.1068819.
doi: 10.1126/science.1068819 URL pmid: 11910108 |
[64] |
Chen CY, Yao S, Huang D, et al. Phosphoantigen/IL2 expansion and differentiation of Vγ2Vδ2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog, 2013,9(8):e1003501. doi: 10.1371/journal.ppat.1003501.
doi: 10.1371/journal.ppat.1003501 URL pmid: 23966854 |
[65] |
Dieli F, Troye Blomberg M, Ivanyi J, et al. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis, 2001,184(8):1082-1085. doi: 10.1086/323600.
doi: 10.1086/323600 URL pmid: 11574927 |
[66] |
Spencer CT, Abate G, Sakala IG, et al. Granzyme A produced by γ(9)δ(2) T cells induces human macrophages to inhibit growth of an intracellular pathogen. PLoS Pathog, 2013,9(1):e1003119. doi: 10.1371/journal.ppat.1003119.
doi: 10.1371/journal.ppat.1003119 URL pmid: 23326234 |
[67] |
Turner RD, Chiu C, Churchyard GJ, et al. Tuberculosis Infectiousness and Host Susceptibility. J Infect Dis, 2017,216(Suppl 6):S636-S643. doi: 10.1093/infdis/jix361.
doi: 10.1093/infdis/jix361 URL pmid: 29112746 |
[68] |
Rosas Taraco AG, Arce Mendoza AY, Caballero Olín G, et al. Mycobacterium tuberculosis upregulates coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Res Hum Retroviruses, 2006,22(1):45-51. doi: 10.1089/aid.2006.22.45.
doi: 10.1089/aid.2006.22.45 URL pmid: 16438645 |
[69] |
Geldmacher C, Ngwenyama N, Schuetz A, et al. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med, 2010,207(13):2869-2881. doi: 10.1084/jem.20100090.
doi: 10.1084/jem.20100090 URL pmid: 21115690 |
[70] |
Day CL, Mkhwanazi N, Reddy S, et al. Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis, 2008,197(7):990-999. doi: 10.1086/529048.
doi: 10.1086/529048 URL pmid: 18419535 |
[71] |
Day CL, Abrahams DA, Harris LD, et al. HIV-1 Infection is Associated with Depletion and Functional Impairment of Mycobacterium tuberculosis-Specific CD4 T Cells in Individuals with Latent Tuberculosis Infection. J Immunol, 2017,199(6):2069-2080. doi: 10.4049/jimmunol.1700558.
doi: 10.4049/jimmunol.1700558 URL pmid: 28760884 |
[72] |
Kalokhe AS, Adekambi T, Ibegbu CC, et al. Impaired degranulation and proliferative capacity of Mycobacterium tuberculosis-specific CD8 + T cells in HIV-infected individuals with latent tuberculosis . J Infect Dis, 2015,211(4):635-640. doi: 10.1093/infdis/jiu505.
doi: 10.1093/infdis/jiu505 URL pmid: 25205634 |
[73] | 邓国防, 周泱. 浅谈HIV感染并发结核病患者的诊治问题. 结核病与肺部健康杂志, 2017,6(1):16-20. doi: 10.3969/j.issn.2095-3755.2017.01.005. |
[74] | 唐佩军, 吴妹英. 结核分枝杆菌感染免疫应答与免疫逃逸机制的研究进展. 结核病与肺部健康杂志, 2017,6(2):181-186. doi: 10.3969/j.issn.2095-3755.2017.02.022. |
[75] |
Flint JL, Kowalski JC, Karnati PK, et al. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A, 2004,101(34):12598-12603. doi: 10.1073/pnas.0404892101.
doi: 10.1073/pnas.0404892101 URL pmid: 15314236 |
[76] |
Pajuelo D, Gonzalez Juarbe N, Tak U, et al. NAD + Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis . Cell Rep, 2018,24(2):429-440. doi: 10.1016/j.celrep.2018.06.042.
doi: 10.1016/j.celrep.2018.06.042 URL pmid: 29996103 |
[77] | 卢立国, 严明月, 孙婷婷, 等. 结核患者与卡介苗接种次数相关性断面监测及思考. 临床医药文献电子杂志, 2016,3(28):5526-5528. |
[78] | 李凡, 刘晶星. 医学微生物学. 7版. 北京: 人民卫生出版社, 2007: 150-158. |
[79] | 杨晓明, 李忠明. 提升卡介苗免疫保护力的关键技术和研发新型结核病疫苗的策略. 中华微生物学和免疫学杂志, 2012,32(9):761-764. doi: 10.3760/cma.j.issn.0254-5101.2012.09.001. |
[80] |
Hsu T, Hingley Wilson SM, Chen B, et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A, 2003,100(21):12420-12425. doi: 10.1073/pnas.1635213100.
doi: 10.1073/pnas.1635213100 URL pmid: 14557547 |
[81] | Gillard P, Yang PC, Danilovits M, et al. Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: A phase Ⅱ randomised study. Tuberculosis (Edinb), 2016,100:118-127. doi: 10.1016/j.tube.2016.07.005. |
[82] |
Geldenhuys H, Mearns H, Miles DJ, et al. The tuberculosis vaccine H4:IC31 is safe and induces a persistent polyfunctional CD4 T cell response in South African adults: A randomized controlled trial. Vaccine, 2015,33(30):3592-3599. doi: 10.1016/j.vaccine.2015.05.036.
URL pmid: 26048780 |
[83] |
Luabeya AK, Kagina BM, Tameris MD, et al. First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine, 2015,33(33):4130-4140. doi: 10.1016/j.vaccine.2015.06.051.
doi: 10.1016/j.vaccine.2015.06.051 URL pmid: 26095509 |
[84] | Baldwin SL, Reese VA, Huang PW, et al. Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Clin Vaccine Immunol, 2015,23(2):137-147. doi: 10.1128/CVI.00458-15. |
[85] | Smaill F, Jeyanathan M, Smieja M, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med, 2013, 5(205): 205ra134. doi: 10.1126/scitranslmed.3006843. |
[86] |
Stylianou E, Griffiths KL, Poyntz HC, et al. Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine, 2015,33(48):6800-6808. doi: 10.1016/j.vaccine.2015.10.017.
doi: 10.1016/j.vaccine.2015.10.017 URL pmid: 26478198 |
[87] |
Minhinnick A, Satti I, Harris S, et al. A first-in-human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A-IMX313, administered to BCG-vaccinated adults. Vaccine, 2016,34(11):1412-1421. doi: 10.1016/j.vaccine.2016.01.062.
doi: 10.1016/j.vaccine.2016.01.062 URL pmid: 26854906 |
[88] |
Lahey T, Laddy D, Hill K, et al. Immunogenicity and Protective Efficacy of the DAR-901 Booster Vaccine in a Murine Model of Tuberculosis. PLoS One, 2016,11(12):e0168521. doi: 10.1371/journal.pone.0168521.
doi: 10.1371/journal.pone.0168521 URL pmid: 27997597 |
[89] |
Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet, 2013,381(9871):1021-1028. doi: 10.1016/S0140-6736(13)60177-4.
doi: 10.1016/S0140-6736(13)60177-4 URL pmid: 23391465 |
[90] |
Hansen SG, Zak DE, Xu G, et al. Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nat Med, 2018,24(2):130-143. doi: 10.1038/nm.4473.
doi: 10.1038/nm.4473 URL pmid: 29334373 |
[91] |
Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013,31(9):1340-1348. doi: 10.1016/j.vaccine.2012.12.053.
doi: 10.1016/j.vaccine.2012.12.053 URL pmid: 23290835 |
[92] | Aguilo N, Uranga S, Marinova D, et al. MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb), 2016,96:71-74. doi: 10.1016/j.tube.2015.10.010. |
[93] |
Nell AS, D’lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase Ⅱ clinical trial in patients with latent tuberculosis infection. PLoS One, 2014,9(2):e89612. doi: 10.1371/journal.pone.0089612.
doi: 10.1371/journal.pone.0089612 URL pmid: 24586912 |
[94] |
Zheng J, Chen L, Liu L, et al. Proteogenomic Analysis and Discovery of Immune Antigens in Mycobacterium vaccae. Mol Cell Proteomics, 2017,16(9):1578-1590. doi: 10.1074/mcp.M116.065813.
doi: 10.1074/mcp.M116.065813 URL pmid: 28733429 |
[95] | 肖彤洋, 李晓琴, 闫宇涵, 等. 母牛分枝杆菌与结核分枝杆菌和卡介苗的交叉免疫应答研究. 中华微生物学和免疫学杂志, 2019,39(3):212-216. doi: 10.3760/cma.j.issn.0254-5101.2019.03.010. |
[96] |
Kagina BM, Abel B, Scriba TJ, et al. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med, 2010,182(8):1073-1079. doi: 10.1164/rccm.201003-0334OC.
doi: 10.1164/rccm.201003-0334OC URL pmid: 20558627 |
[97] | 刘海鹏, 戈宝学. 结核病免疫机制及疫苗研制开发研究进展. 结核病与肺部健康杂志, 2012,1(1):74-79. |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[5] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[6] | Meng Ting, Chen Jingfang, Deng Guofang, Lin Yi, Ruan Shujin, Liu Linlin, Li Mengjun. Research progress on mental vulnerability and anxiety-depression status in tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 583-589. |
[7] | Yang Hongyu, Liu Qiaolin, Kang Xiong, Yang Xiaoli. Research progress on prognostic factors and integrated prevention and control strategies of tuberculosis and AIDS [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 590-596. |
[8] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[9] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[10] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[11] | Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 484-488. |
[12] | Chen Yanling, Wu Di, Chen Xiuping, Lin Yujun, Chen Xiaohong. Study on the changes in lymphocyte subsets during secondary pulmonary tuberculosis dissemination and its clinical significance [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 294-304. |
[13] | He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. |
[14] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[15] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||