Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (5): 484-488.doi: 10.19983/j.issn.2096-8493.2024097
• Review Articles • Previous Articles Next Articles
Received:
2024-05-30
Online:
2024-10-20
Published:
2024-10-14
Contact:
Zhan Lu
E-mail:273427705@qq.com
Supported by:
CLC Number:
Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(5): 484-488. doi: 10.19983/j.issn.2096-8493.2024097
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024097
[1] |
Besharat ZM, Trocchianesi S, Verrienti A, et al. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest, 2023, 46(12):2583-2599. doi:10.1007/s40618-023-02115-2.
pmid: 37286863 |
[2] | Vanhie A, Caron E, Vermeersch E, et al. Circulating micro-RNAs as Non-Invasive Biomarkers in Endometriosis Diagnosis-A Systematic Review. Biomedicines, 2024, 12(4):888. doi:10.3390/biomedicines12040888. |
[3] | McAlpine SM, Roberts SE, Hargreaves BKV, et al. Differentially Expressed Inflammation-Regulating MicroRNAs in Oligoarticular Juvenile Idiopathic Arthritis. J Rheumatol, 2023, 50(2):227-235. doi:10.3899/jrheum.220160. |
[4] |
Li R, Li D, Wang H, et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF. Stem Cell Res Ther, 2022, 13(1):149. doi:10.1186/s13287-022-02823-1.
pmid: 35395782 |
[5] | 张益源, 伊正君, 付玉荣. microRNA在结核分枝杆菌抗细胞自噬作用中的研究进展. 生物化学与生物物理进展, 2019, 46(1):43-50. doi:10.16476/j.pibb.2018.0133. |
[6] |
Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2021, 78(4):1233-1261. doi:10.1007/s00018-020-03656-y.
pmid: 33057840 |
[7] | Wang X, Pham A, Kang L, et al. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics, 2021, 14(1):16. doi:10.3390/pharmaceutics14010016. |
[8] | Huang H, Zhu J, Fan L, et al. MicroRNA Profiling of Exosomes Derived from Red Blood Cell Units: Implications in Transfusion-Related Immunomodulation. Biomed Res Int, 2019, 2019:2045915. doi:10.1155/2019/2045915. |
[9] | Xu P, Palmer LE, Lechauve C, et al. Regulation of gene expression by miR-144/ 451 during mouse erythropoiesis. Blood, 2019, 133(23):2518-2528. doi:10.1182/blood.2018854604. |
[10] |
Kretov DA, Shafik AM, Cifuentes D. Assessing miR-451 Activity and Its Role in Erythropoiesis. Methods Mol Biol, 2018, 1680:179-190. doi:10.1007/978-1-4939-7339-2_12.
pmid: 29030849 |
[11] | 侯涛, 戴素红, 赵广超, 等, 储存红细胞代谢产物持续影响巨噬细胞功能的初步研究. 临床血液学杂志, 2024, 37(6):384-389. doi:10.13201/j.issn.1004-2806.2024.06.003. |
[12] | Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015, 264(1):220-232. doi:10.1111/imr.12268. |
[13] | Liu X, Zhang D, Wang H, et al. MiR-451a enhances the phagocytosis and affects both M1 and M2 polarization in macrophages. Cell Immunol, 2021, 365(7):104377. doi:10.1016/j.cellimm.2021.104377. |
[14] |
Motamedi M, Razmkhah F, Rezakhani L, et al. Altered Expression of CD44, SIRT1, CXCR4, miR-21, miR-34a, and miR-451 Genes in MKN-45 Cell Line After Docetaxel Treatment. J Gastrointest Cancer, 2020, 51(2):520-526. doi:10.1007/s12029-019-00274-1.
pmid: 31273630 |
[15] | 刘浩然. miRNA-451a及靶基因在结核病发病机制中的作用及诊断价值的研究. 北京: 北京市结核病胸部肿瘤研究所, 2019. |
[16] | 尚晓倩, 赵慧, 马秀敏, 等. microRNA与结核分枝杆菌感染的致病机制研究进展. 中华医院感染学杂志, 2019, 29(3):477-480. doi:10.11816/cn.ni.ni.2019-174265. |
[17] |
Zmonarski SC, Banasik M, Madziarska K, et al. The role of toll-like receptors in multifactorial mechanisms of early and late renal allotransplant injury, with a focus on the TLR4 receptor and mononuclear cells. Adv Clin Exp Med, 2019, 28(7):981-987. doi:10.17219/acem/94139.
pmid: 30968609 |
[18] | Ghaffarpour S, Foroutan A, Askari N, et al. SP-A and TLR4 localization in lung tissue of SM-exposed patients. Int Immunopharmacol, 2020, 80:105936. doi:10.1016/j.intimp.2019.105936. |
[19] | Sepehri Z, Kiani Z, Kohan F, et al. Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review. Lab Med, 2019, 50(2):117-129. doi:10.1093/labmed/lmy047. |
[20] | Han L, Tieliwaerdi N, Li X. METTL3-deficiency m6A-dependently degrades MALAT1 to suppress NLRP3-mediated pyroptotic cell death and inflammation in Mycobacterium tuberculosis (H37Ra strain)-infected mouse macrophages. Tuberculosis (Edinb), 2024, 146:102502. doi:10.1016/j.tube.2024.102502. |
[21] | Wu S, Liu X, Chen L, et al. Polymorphisms of TLR2, TLR4 and TOLLIP and tuberculosis in two independent studies. Biosci Rep, 2020, 40(8):BSR20193141. doi:10.1042/bsr20193141. |
[22] | Shabariah R, Hatta M, Idris I, et al. Comparison TLR2 and TLR4 serum levels in children with pulmonary and extrapulmonary tuberculosis with and without a Bacillus Calmette-Guérin (BCG) scar. J Clin Tuberc Other Mycobact Dis, 2021, 25(4):100272. doi:10.1016/j.jctube.2021.100272. |
[23] |
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, et al. Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M.tuberculosis. Clin Exp Immunol, 2020, 199(2):230-243. doi:10.1111/cei.13388.
pmid: 31631328 |
[24] | Wei X, Yi X, Liu J, et al. Circ-phkb promotes cell apoptosis and inflammation in LPS-induced alveolar macrophages via the TLR4/MyD88/NF-kB/CCL2 axis. Respir Res, 2024, 25(1):62. doi:10.1186/s12931-024-02677-6. |
[25] | Roedig H, Nastase MV, Frey H, et al. Biglycan is a new high-affinity ligand for CD 14 in macrophages. Matrix Biol, 2019, 77(3):4-22. doi:10.1016/j.matbio.2018.05.006. |
[26] |
Gugliandolo E, Fusco R, Ginestra G, et al. Involvement of TLR4 and PPAR-α Receptors in Host Response and NLRP 3 Inflammasome Activation, Against Pulmonary Infection With Pseudomonas Aeruginosa. Shock, 2019, 51(2):221-227. doi:10.1097/SHK.0000000000001137.
pmid: 29547450 |
[27] | Chen J, Tang Z, Chen Z, et al. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord, 2023, 23(1):122. doi:10.1186/s12872-023-03124-y. |
[28] | Yu J, Tang L, Yang L, et al. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. Phytomedicine, 2024, 123:155123. doi:10.1016/j.phymed.2023.155123. |
[29] | Huang Z, Song S, Zhang D, et al. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol, 2023, 45(1):61-72. doi:10.1080/08923973.2022.2115924. |
[30] |
Nakashima M, Ishikawa K, Fugiwara A, et al. miR-451a levels rather than human papillomavirus vaccine administration is associated with the severity of murine experimental autoimmune encephalomyelitis. Sci Rep, 2021, 11(1):9369. doi:10.1038/s41598-021-88842-z.
pmid: 33931700 |
[31] | Pahari S, Negi S, Aqdas M, et al. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy, 2020, 16(6):1021-1043. doi:10.1080/15548627.2019.1658436. |
[32] | 曹建, 张媛梅, 黄红梅, 等. miR-451a调控TLR4信号通路参与结核分枝杆菌感染机制的研究. 中国病原生物学杂志, 2022, 17(9):1077-1081. doi:10.13350/j.cjpb.220919. |
[33] |
Sun X, Zhang H. miR-451 elevation relieves inflammatory pain by suppressing microglial activation-evoked inflammatory response via targeting TLR4. Cell Tissue Res, 2018, 374(3):487-495. doi:10.1007/s00441-018-2898-7.
pmid: 30069596 |
[34] | 张会强, 文政芳, 张冬杰, 等. IFN-γ及血清炎症因子水平变化与肺结核发病相关性及作用机制分析. 中华医院感染学杂志, 2019, 29(2):184-187. doi:10.11816/cn.ni.2019-174186. |
[35] | 颜月, 李桃, 方蕾. miR-144/451在呼吸系统疾病中的研究进展. 医学综述, 2020, 26 (11):2117-2121,2127. doi:10.3969/j.issn.1006-2084.2020.11.007. |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Wan Ying, Pang Xuewen, Zhang Fan. Evaluation on effect of health promotion for tuberculosis prevention and control in Tianjin City from 2010 to 2020 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 22-29. |
[4] | Zhao Yongnian, Zhang Lijie, Wang Tongmin. Analysis of the epidemiological characteristics of reported pulmonary tuberculosis in Xinjiang Production and Construction Corps, 2014—2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 30-34. |
[5] | Zheng Jianli, Wu Yumei, Zhang Shili, Du Zixian, Li Turong, Chen Shisheng, Lin Wenge. Cost-effectiveness analysis of active tuberculosis screening among high-risk populations in Longyan City, Fujian Province [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 35-39. |
[6] | Yang Yan, Dong Wen, Chen Jianjun, Zhang Yu. Epidemiologic characteristics of pulmonary tuberculosis in Zhuxi County, Shiyan City (2014-2023) [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 40-45. |
[7] | Qi Wei, Zhao Enyi. The epidemic characteristics and the trends of pulmonary tuberculosis in elderly and non-elderly in central urban area, Tianjin from 2006 to 2020 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 46-54. |
[8] | Yan Qinghu, Xue Feng, Yu Yong, Qin Yi, Yan Qingmei, Cui Jia. The value of ultrasound-guided microwave ablation in the treatment of localized tuberculous lesions [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 55-60. |
[9] | Chen Jing, Qin Yali, Wang Mingdong, Yang Rubin, Wang Qian, Peng Yanqing, Qiu Jiyao, Zhang Xiao, Zhou Xinai. The value of QuantiFERON-TB Gold Plus in the clinical diagnosis of active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 61-67. |
[10] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[11] | Yan Wenhua, Chen Wenjun. The value of digital health education in the preventive management of caregivers of patients with bacterial positive pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 73-78. |
[12] | Liao Ying, Pang Yan, Zhao Jing, He Gaoqin, You Maolin, Wang Lei. Analysis on the reporting and case finding delay characteristics of pulmonary tuberculosis patients in Liangping District, Chongqing from 2018 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 8-13. |
[13] | Zhang Ying, Guo Chunhui. Research progress in the treatment of tuberculous tracheobronchial stenosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 87-93. |
[14] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[15] | Hu Xinyang, Gao Jingtao. Interpretation of WHO global tuberculosis report 2024 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 500-504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||