Journal of Tuberculosis and Lung Disease ›› 2023, Vol. 4 ›› Issue (2): 98-109.doi: 10.19983/j.issn.2096-8493.20230025
• Special Topic • Previous Articles Next Articles
Received:
2023-02-04
Online:
2023-04-20
Published:
2023-04-07
Contact:
Xie Jianping, Email: CLC Number:
Jiang Zhiyong, Xie Jianping. Structure, substrate and function of mycobacterium type Ⅶ secretory system[J]. Journal of Tuberculosis and Lung Disease , 2023, 4(2): 98-109. doi: 10.19983/j.issn.2096-8493.20230025
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20230025
[1] |
Pinheiro J, Reis O, Vieira A, et al. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence, 2017, 8(6): 993-1004. doi:10.1080/21505594.2016.1244589.
doi: 10.1080/21505594.2016.1244589 pmid: 27723420 |
[2] |
Spencer BL, Doran KS. Evolving understanding of the type Ⅶ secretion system in Gram-positive bacteria. PLoS Pathog, 2022, 18(7): e1010680. doi:10.1371/journal.ppat.1010680.
doi: 10.1371/journal.ppat.1010680 URL |
[3] |
Aly KA, Anderson M, Ohr RJ, et al. Isolation of a Membrane Protein Complex for Type Ⅶ Secretion in Staphylococcus aureus. J Bacteriol, 2017, 199(23): e00482-17. doi:10.1128/JB.00482-17.
doi: 10.1128/JB.00482-17 |
[4] |
Ohr RJ, Anderson M, Shi M, et al. EssD, a Nuclease Effector of the Staphylococcus aureus ESS Pathway. J Bacteriol, 2016, 199(1): e00528-16. doi:10.1128/JB.00528-16.
doi: 10.1128/JB.00528-16 |
[5] |
Tiwari S, Casey R, Goulding CW, et al. Infect and Inject: How Mycobacterium tuberculosis Exploits Its Major Virulence-Associated Type Ⅶ Secretion System, ESX-1. Microbiol Spectr, 2019, 7(3): 10.1128/microbiolspec.BAI-0024-2019. doi:10.1128/microbiolspec.BAI-0024-2019.
doi: 10.1128/microbiolspec.BAI-0024-2019 |
[6] |
Yimer SA, Kalayou S, Homberset H, et al. Lineage-Specific Proteomic Signatures in the Mycobacterium tuberculosis Complex Reveal Differential Abundance of Proteins Involved in Virulence, DNA Repair, CRISPR-Cas, Bioenergetics and Lipid Metabolism. Front Microbiol, 2020, 11: 550760. doi:10.3389/fmicb.2020.550760.
doi: 10.3389/fmicb.2020.550760 URL |
[7] |
Chirakos AE, Nicholson KR, Huffman A, et al. Conserved ESX-1 Substrates EspE and EspF Are Virulence Factors That Regulate Gene Expression. Infect Immun, 2020, 88(12): e00289-20. doi:10.1128/IAI.00289-20.
doi: 10.1128/IAI.00289-20 |
[8] |
Raffetseder J, Iakobachvili N, Loitto V, et al. Retention of EsxA in the Capsule-Like Layer of Mycobacterium tuberculosis Is Associated with Cytotoxicity and Is Counteracted by Lung Surfactant. Infect Immun, 2019, 87(3): e00803-18. doi:10.1128/IAI.00803-18.
doi: 10.1128/IAI.00803-18 |
[9] |
Lim ZL, Drever K, Dhar N, et al. Mycobacterium tuberculosis EspK Has Active but Distinct Roles in the Secretion of EsxA and EspB. J Bacteriol, 2022, 204(4): e0006022. doi:10.1128/jb.00060-22.
doi: 10.1128/jb.00060-22 URL |
[10] |
Sala C, Odermatt NT, Soler-Arnedo P, et al. EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathog, 2018, 14(12): e1007491. doi:10.1371/journal.ppat.1007491.
doi: 10.1371/journal.ppat.1007491 URL |
[11] |
Pajuelo D, Tak U, Zhang L, et al. Toxin secretion and trafficking by Mycobacterium tuberculosis. Nat Commun, 2021, 12(1): 6592. doi:10.1038/s41467-021-26925-1.
doi: 10.1038/s41467-021-26925-1 pmid: 34782620 |
[12] |
Izquierdo Lafuente B, Ummels R, Kuijl C, et al. Mycobacterium tuberculosis Toxin CpnT Is an ESX-5 Substrate and Requires Three Type Ⅶ Secretion Systems for Intracellular Secretion. mBio, 2021, 12(2): e02983-20. doi:10.1128/mBio.02983-20.
doi: 10.1128/mBio.02983-20 |
[13] |
Abdallah AM, Weerdenburg EM, Guan Q, et al. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB 6 as a transcriptional regulator. PLoS One, 2019, 14(1): e0211003. doi:10.1371/journal.pone.0211003.
doi: 10.1371/journal.pone.0211003 URL |
[14] |
Kudhair BK, Hounslow AM, Rolfe MD, et al. Structure of a Wbl protein and implications for NO sensing by M.tuberculosis. Nat Commun, 2017, 8(1): 2280. doi:10.1038/s41467-017-02418-y.
doi: 10.1038/s41467-017-02418-y pmid: 29273788 |
[15] |
Raze D, Segers J, Mille C, et al. Coordinate regulation of virulence and metabolic genes by the transcription factor HbhR in Mycobacterium marinum. Mol Microbiol, 2020, 113(1): 52-67. doi:10.1111/mmi.14400.
doi: 10.1111/mmi.14400 URL |
[16] |
Elliott SR, White DW, Tischler AD. Mycobacterium tuberculosis Requires Regulation of ESX-5 Secretion for Virulence in Irgm1-Deficient Mice. Infect Immun, 2019, 87(2): e00660-18. doi:10.1128/IAI.00660-18.
doi: 10.1128/IAI.00660-18 |
[17] |
Burggraaf MJ, Speer A, Meijers AS, et al. Type Ⅶ Secretion Substrates of Pathogenic Mycobacteria Are Processed by a Surface Protease. mBio, 2019, 10(5): e01951-19. doi:10.1128/mBio.01951-19.
doi: 10.1128/mBio.01951-19 |
[18] |
Williamson ZA, Chaton CT, Ciocca WA, et al. PE5-PPE4-EspG 3 heterotrimer structure from mycobacterial ESX-3 secretion system gives insight into cognate substrate recognition by ESX systems. J Biol Chem, 2020, 295(36): 12706-12715. doi:10.1074/jbc.RA120.012698.
doi: 10.1074/jbc.RA120.012698 pmid: 32675282 |
[19] |
Tuukkanen AT, Freire D, Chan S, et al. Structural Variability of EspG Chaperones from Mycobacterial ESX-1, ESX-3, and ESX-5 Type Ⅶ Secretion Systems. J Mol Biol, 2019, 431(2): 289-307. doi:10.1016/j.jmb.2018.11.003.
doi: S0022-2836(18)30423-6 pmid: 30419243 |
[20] |
Kriel NL, Newton-Foot M, Bennion OT, et al. Localization of EccA 3 at the growing pole in Mycobacterium smegmatis. BMC Microbiol, 2022, 22(1): 140. doi:10.1186/s12866-022-02554-6.
doi: 10.1186/s12866-022-02554-6 |
[21] |
Famelis N, Rivera-Calzada A, Degliesposti G, et al. Architecture of the mycobacterial type Ⅶ secretion system. Nature, 2019, 576(7786): 321-325. doi:10.1038/s41586-019-1633-1.
doi: 10.1038/s41586-019-1633-1 |
[22] |
Bunduc CM, Fahrenkamp D, Wald J, et al. Structure and dynamics of a mycobacterial type Ⅶ secretion system. Nature, 2021, 593(7859): 445-448. doi:10.1038/s41586-021-03517-z.
doi: 10.1038/s41586-021-03517-z |
[23] |
Damen MPM, Ummels R, et al. Protease domain and transmembrane domain of the type Ⅶ secretion mycosin protease determine system-specific functioning in mycobacteria. J Biol Chem, 2019, 294(13): 4806-4814. doi:10.1074/jbc.RA118.007090.
doi: 10.1074/jbc.RA118.007090 URL |
[24] |
Wang Y, Tang Y, Lin C, et al. Crosstalk between the ancestral type Ⅶ secretion system ESX-4 and other T7SS in Mycobacterium marinum. iScience, 2021, 25(1): 103585. doi:10.1016/j.isci.2021.103585.
doi: 10.1016/j.isci.2021.103585 URL |
[25] |
Wang L, Asare E, Shetty AC, et al. Multiple genetic paths including massive gene amplification allow Mycobacterium tuberculosis to overcome loss of ESX-3 secretion system substrates. Proc Natl Acad Sci U S A, 2022, 119(8): e2112608119. doi:10.1073/pnas.2112608119.
doi: 10.1073/pnas.2112608119 |
[26] |
Osman MM, Shanahan JK, Chu F, et al. The C terminus of the mycobacterium ESX-1 secretion system substrate ESAT-6 is required for phagosomal membrane damage and virulence. Proc Natl Acad Sci U S A, 2022, 119(11): e2122161119. doi:10.1073/pnas.2122161119.
doi: 10.1073/pnas.2122161119 |
[27] |
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol, 2022, 13: 791136. doi:10.3389/fimmu.2022.791136.
doi: 10.3389/fimmu.2022.791136 URL |
[28] |
Beckwith KS, Beckwith MS, Ullmann S, et al. Plasma membrane damage causes NLRP 3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun, 2020, 11(1): 2270. doi:10.1038/s41467-020-16143-6.
doi: 10.1038/s41467-020-16143-6 pmid: 32385301 |
[29] |
Pattanaik KP, Ganguli G, Naik SK, et al. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways. Mol Immunol, 2021, 130: 133-141. doi:10.1016/j.molimm.2020.11.020.
doi: 10.1016/j.molimm.2020.11.020 pmid: 33419561 |
[30] |
Mittal E, Skowyra ML, Uwase G, et al. Mycobacterium tuberculosis Type Ⅶ Secretion System Effectors Differentially Impact the ESCRT Endomembrane Damage Response. mBio, 2018, 9(6): e01765-18. doi:10.1128/mBio.01765-18.
doi: 10.1128/mBio.01765-18 |
[31] |
Portal-Celhay C, Tufariello JM, Srivastava S, et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat Microbiol, 2016, 2: 16232. doi:10.1038/nmicrobiol.2016.232.
doi: 10.1038/nmicrobiol.2016.232 pmid: 27918526 |
[32] |
Wang L, Liu Z, Wang J, et al. Oxidization of TGF β-activated kinase by MPT 53 is required for immunity to Mycobacterium tuberculosis. Nat Microbiol, 2019, 4(8): 1378-1388. doi:10.1038/s41564-019-0436-3.
doi: 10.1038/s41564-019-0436-3 pmid: 31110366 |
[33] |
Ates LS, Dippenaar A, Ummels R, et al. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol, 2018, 3(2): 181-188. doi:10.1038/s41564-017-0090-6.
doi: 10.1038/s41564-017-0090-6 |
[34] |
Madacki J, Orgeur M, Mas Fiol G, et al. ESX-1-Independent Horizontal Gene Transfer by Mycobacterium tuberculosis Complex Strains. mBio, 2021, 12(3): e00965-21. doi:10.1128/mBio.00965-21.
doi: 10.1128/mBio.00965-21 |
[35] |
Jia P, Zhang Y, Xu J, et al. IMB-BZ as an Inhibitor Targeting ESX-1 Secretion System to Control Mycobacterial Infection. J Infect Dis, 2022, 225(4): 608-616. doi:10.1093/infdis/jiab486.
doi: 10.1093/infdis/jiab486 URL |
[36] |
Drever K, Lim ZL, Zriba S, et al. Protein Synthesis and Degradation Inhibitors Potently Block Mycobacterium tuberculosis type-7 Secretion System ESX-1 Activity. ACS Infect Dis, 2021, 7(2): 273-280. doi:10.1021/acsinfecdis.0c00741.
doi: 10.1021/acsinfecdis.0c00741 pmid: 33534536 |
[37] |
Wang Q, Boshoff HIM, Harrison JR, et al. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science, 2020, 367(6482): 1147-1151. doi:10.1126/science.aav5912.
doi: 10.1126/science.aav5912 URL |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[5] | Li Xiaoxue, Xiao Xiao, Xu Chunhua, Dong Shulan, Wang Shanshan, Cao Jiayi, Wu Zheyuan, Hu Yi, Shen Xin. The prevalence of latent tuberculosis infection among close contacts of active tuberculosis patients: a Meta-analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 404-414. |
[6] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[7] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[8] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
[9] | Liang Chen, Tang Shenjie, Lin Minggui. Research progress of comprehensive treatment for tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 70-80. |
[10] | You Guoqing, Liu Wenguo, Feng Xin, Yu Min, Shi Lin, Hu Yan. Analysis of fluoroquinolones resistance in multidrug-resistant tuberculosis patients in Chongqing from 2020 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 475-479. |
[11] | Wang Yuxiang, Hu Qiumeng, Zheng Junfeng, Deng Guofang, Zhang Peize. Analysis of clinical characteristics and prognosis of pulmonary diseases caused by Mycobacterium kansassi and Mycobacterium intracellular [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 480-485. |
[12] | Yan Yaru, Xie Jianping. Research progress on the role of interleukin-1 in immune response and metabolic reprogramming of macrophages against Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 511-518. |
[13] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
[14] | Luo Yi, Tao Fengxi, Li Guofei, Zhang Huihui, Peng Peng, Ren Yi, Liu Suyang. Environmental monitoring and analysis of Mycobacterium tuberculosis and discussion on the effect of disinfection equipment in a tuberculosis hospital [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 135-140. |
[15] | Luo Dan, Chen Songhua, Zhang Yu, Wang Wei, Wu Qian, Wu Yonghao, Liu Kui, Chen Bin. Analysis on the current status and trend of MTB/HIV co-infection screening in Zhejiang Province from 2015 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(6): 443-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||