[1] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023, 73(1):17-48. doi:10.3322/caac.21763.
|
[2] |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent, 2024, 4(1):47-53. doi:10.1016/j.jncc.2024.01.006.
|
[3] |
Song P, Zhang J, Shang C, et al. Real-world evidenceand clinical observations of the treatment of advanced non-small cell lung cancer with PD-1/PD-L1 inhibitors. Sci Rep, 2019, 9(1):4278. doi:10.1038/s41598-019-40748-7.
pmid: 30862891
|
[4] |
Okiyama N, Tanaka R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergol Int, 2022, 71(2):169-178. doi:10.1016/j.alit.2022.01.001.
pmid: 35101349
|
[5] |
陈佳骏, 邱磊, 王蕾, 等. 中药在治疗非小细胞肺癌中的潜在作用研究进展. 中成药, 2024, 46(1):204-210. doi:10.3969/j.issn.1001-1528.2024.01.035.
|
[6] |
Kong FM, Chen TQ, Li XJ, et al. The Current Application and Future Prospects of Astragalus Polysaccharide Combined with Cancer Immunotherapy:A Review. Front Pharmacol, 2021, 12:737674. doi:10.3389/fphar.2021.737674.
|
[7] |
Franco F, Jaccard A, Romero P, et al. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab, 2020, 2(10):1001-1012. doi:10.1038/s42255-020-00280-9.
pmid: 32958939
|
[8] |
Bamodu OA, Kuo KT, Wang CH, et al. Astragalus polysaccharides (PG2) Enhances the M1 Polarization of Macrophages, Functional Maturation of Dendritic Cells, and T Cell-Mediated Anticancer Immune Responses in Patients with Lung Cancer. Nutrients, 2019, 11(10): 2264. doi:10.3390/nu11102264.
|
[9] |
Wang J, Zhang T, Cheng X. Regulatory Effect of Astragalus Polysacharin on Expresion of PD-1/PD-Ls Molecules in Melanoma Mice. Acta Universitatis Traditionis Medicalis Sinensis, 2014, 28 (5): 74-79. doi:10.16306/j.1008-861x.2014.05.019.
|
[10] |
Gong Q, Yu H, Ding G, et al. Suppression of stemness and enhancement of chemosensibility in the resistant melanoma were induced by Astragalus polysaccharide through PD-L1 downregulation. Eur J Pharmacol, 2022, 916:174726. doi:10.1016/j.ejphar.2021.174726.
|
[11] |
Zhang H, Huang H, Wu S, et al. Single-cell RNA sequencing reveals the effects of anti-PD-L 1 therapy on 3LL lung cancer model and its tumor microenvironment. Med Oncol, 2023, 40(10):285. doi:10.1007/s12032-023-02156-w.
|
[12] |
Lv LL, Zhai JW, Wu JJ, et al. High CD38 expression defines a mitochondrial function-adapted CD8+ T cell subset with implications for lung cancer immunotherapy. Cancer Immunol Immunother, 2025, 74(2):49. doi:10.1007/s00262-024-03881-5.
|
[13] |
Zhao LC, Zhong YT, Liang J, et al. Effect of Astragalus Polysaccharide on the Expression of VEGF and EGFR in Mice with Lewis Transplantable Lung Cancer. J Coll Physicians Surg Pak, 2019, 29(4): 392-394. doi:10.29271/jcpsp.2019.04.392.
|
[14] |
Lim SM, Park HB, Jin JO. Polysaccharide from Astragalus membranaceus promotes the activation of human peripheral blood and mouse spleen dendritic cells. Chin J Nat Med, 2021, 19(1):56-62. doi:10.1016/S1875-5364(21)60006-7.
|
[15] |
Liao CH, Yong CY, Lai GM, et al. Astragalus Polysaccharide (PG2) Suppresses Macrophage Migration Inhibitory Factor and Aggressiveness of Lung Adenocarcinoma Cells. Am J Chin Med, 2020, 48(6): 1491-1509. doi:10.1142/S0192415X20500731.
|
[16] |
Phacharapiyangkul N, Wu LH, Lee WY, et al. The extracts of Astragalus membranaceus enhance chemosensitivity and reduce tumor indoleamine 2, 3-dioxygenase expression. Int J Med Sci, 2019, 16(8): 1107-1115. doi:10.7150/ijms.33106.
pmid: 31523173
|
[17] |
Chang FL, Tsai KC, Lin TY, et al. Astragalus membranaceus-Derived Anti-Programmed Death-1 Monoclonal Antibodies with Immunomodulatory Therapeutic Effects against Tumors. Biomed Res Int, 2020, 2020:3415471. doi:10.1155/2020/3415471.
|
[18] |
Zhang Y, Wang K, Qin C, et al. Mitochondria dysfunction in CD8+ T cells as an important contributing factor for cancer development and a potential target for cancer treatment: a review. J Exp Clin Cancer Res, 2022, 41(1):227. doi:10.1186/s13046-022-02439-6.
pmid: 35864520
|
[19] |
Hashimoto M, Kamphorst AO, Im SJ, et al. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annu Rev Med, 2018, 69:301-318. doi:10.1146/annurev-med-012017-043208.
pmid: 29414259
|
[20] |
Zehn D, Thimme R, Lugli E, et al. ‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses. Nat Immunol, 2022, 23(6):836-847. doi:10.1038/s41590-022-01219-w.
|
[21] |
Scharping NE, Rivadeneira DB, Menk AV, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol, 2021, 22(2): 205-215. doi:10.1038/s41590-020-00834-9.
pmid: 33398183
|
[22] |
Yu YR, Imrichova H, Wang H, et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat Immunol, 2020, 21(12):1540-1551. doi:10.1038/s41590-020-0793-3.
|
[23] |
Soto-Heredero G, Desdín-Micó G, Mittelbrunn M. Mitochondrial dysfunction defines T cell exhaustion. Cell Metab, 2021, 33(3):470-472. doi:10.1016/j.cmet.2021.02.010.
pmid: 33657392
|
[24] |
Kumar A, Chamoto K, Chowdhury PS, et al. Tumors attenua-ting the mitochondrial activity in T cells escape from PD-1 blockade therapy. Elife, 2020, 9:e52330. doi:10.7554/eLife.52330.
|
[25] |
Ma Q, Xu Y, Tang L, et al. Astragalus Polysaccharide Attenuates Cisplatin-induced Acute Kidney Injury by Suppressing Oxidative Damage and Mitochondrial Dysfunction. Biomed Res Int, 2020, 2020:2851349. doi:10.1155/2020/2851349.
|
[26] |
Thibaut R, Bost P, Milo I, et al. Bystander IFN-γ activity promotes widespread and sustained cytokine signaling altering the tumor microenvironment. Nat Cancer, 2020, 1(3):302-314. doi:10.1038/s43018-020-0038-2.
|
[27] |
Hoekstra ME, Bornes L, Dijkgraaf FE, et al. Long-distance modulation of bystander tumor cells by CD8+ T cell-secreted IFNγ. Nat Cancer, 2020, 1(3):291-301. doi:10.1038/s43018-020-0036-4.
|