[1] Filho AM, Laversanne M, Ferlay J, et al.The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. Int J Cancer, 2025, 156(7):1336-1346. [2] Marie BS, Chaomei C, John HH.CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc,2005:724-728. [3] SciExplorer科学计量数据可视化分析平台[DB/OL].[2025-05-20]https://www.bilibili.com/opus/1012201608450146325 [4] Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics, (2017) 11:959-975. [6] Liang W, Zhao Y, Huang W, et al.Liquid biopsy for early stage lung cancer. J Thorac Dis, 2018 ,10(Suppl 7):S876-S881. [7] Nagasaka M, Uddin MH, Al-Hallak MN, et al.Liquid biopsy for therapy monitoring in early-stage non-small cell lung cancer. Mol Cancer, 2021 ,20(1):82. [8] Shen H, Jin Y, Zhao H, et al.Potential clinical utility of liquid biopsy in early-stage non-small cell lung cancer. BMC Med, 2022 ,20(1):480. [9] Vandekerckhove O, Cuppens K, Pat K, et al.Liquid Biopsy in Early-Stage Lung Cancer: Current and Future Clinical Applications. Cancers (Basel),2023,15(10):2702. [10] Shai S, Patolsky F, Drori H, et al.A novel, accurate, and non-invasive liquid biopsy test to measure cellular immune responses as a tool to diagnose early-stage lung cancer: a clinical trials study. Respir Res, 2023 ,24(1):52. [11] Libling WA, Korn R, Weiss GJ.Review of the use of radiomics to assess the risk of recurrence in early-stage non-small cell lung cancer. Transl Lung Cancer Res, 2023 ,12(7):1575-1589. [12] Shimada Y, Kudo Y, Maehara S, et al.Radiomics with Artificial Intelligence for the Prediction of Early Recurrence in Patients with Clinical Stage IA Lung Cancer. Ann Surg Oncol, 2022 ,29(13):8185-8193. [13] Wang J, Zheng Z, Zhang Y, et al.18F-FDG PET/CT radiomics for prediction of lymphovascular invasion in patients with early stage non-small cell lung cancer. Front Oncol, 2023(13):1185808. [14] Wang Y, Li C, Wang Z, et al.Established the prediction model of early-stage non-small cell lung cancer spread through air spaces (STAS) by radiomics and genomics features. Asia Pac J Clin Oncol,2024 ,20(6):771-778. [15] Yu L, Zhang Z, Yi H, et al.A PET/CT radiomics model for predicting distant metastasis in early-stage non-small cell lung cancer patients treated with stereotactic body radiotherapy: a multicentric study. Radiat Oncol, 2024 ,19(1):10. [16] Lee SH, Kao GD, Feigenberg SJ, et al.Multiblock Discriminant Analysis of Integrative 18F-FDG-PET/CT Radiomics for Predicting Circulating Tumor Cells in Early-Stage Non-small Cell Lung Cancer Treated With Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys,2021 ,110(5):1451-1465. [17] Ye M, Tong L, Zheng X, Wang H, et al.A Classifier for Improving Early Lung Cancer Diagnosis Incorporating Artificial Intelligence and Liquid Biopsy. Front Oncol,2022 ,12:853801. [18] Lu D, Shangguan Z, Su Z,et al.Artificial intelligence-based plasma exosome label-free SERS profiling strategy for early lung cancer detection. Anal Bioanal Chem,2024 ,416(23):5089-5096. [19] Daneshkhah A, Prabhala S, Viswanathan P, et al.Early detection of lung cancer using artificial intelligence-enhanced optical nanosensing of chromatin alterations in field carcinogenesis. Sci Rep,2023 ,13(1):13702. [20] Shimada Y, Kudo Y, Maehara S,et al.Radiomics with Artificial Intelligence for the Prediction of Early Recurrence in Patients with Clinical Stage IA Lung Cancer. Ann Surg Oncolm, 2022,;29(13):8185-8193. |