Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (4): 345-351.doi: 10.19983/j.issn.2096-8493.2024045
• Review Articles • Previous Articles Next Articles
He Fanyi, Lu Nihong, Du Yingrong()
Received:
2024-03-12
Online:
2024-08-20
Published:
2024-08-13
Contact:
Du Yingrong
E-mail:dyr_km@163.com
Supported by:
CLC Number:
He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(4): 345-351. doi: 10.19983/j.issn.2096-8493.2024045
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.2024045
[1] | 涂娇琴, 史娇阳, 范涛, 等. 妊娠合并新型冠状病毒肺炎的临床特点及管理策略. 国际医药卫生导报, 2022, 28(9):1243-1246. doi:10.3760/cma.j.issn.1007-1245.2022.09.014. |
[2] | 李兰娟, 任红. 传染病学. 9版. 北京: 人民卫生出版社, 2018: 212-219. |
[3] | Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1):e20. doi:10.1016/S2666-5247(22)00359-7. |
[4] | Saunders MJ, Evans CA. COVID-19, tuberculosis and poverty: preventing a perfect storm. Eur Respir J, 2020, 56(1):2001348. doi:10.1183/13993003.01348-2020. |
[5] | Tadolini M, Codecasa LR, Garcí a-García JM, et al. Active Tuberculosis, Sequelae and COVID-19 Co-Infection: First Cohort of 49 Cases. Eur Respir J, 2020, 56(1):2001398. doi:10.1183/13993003.01398-2020. |
[6] | World Health Organization. Number of COVID-19 deaths reported to WHO[EB/OL]. [2024-06-02]. https://data.who.int/dashboards/covid19/deaths?n=c. |
[7] | Pai M, Kasaeva T, Swaminathan S. Covid-19’s devastating effect on tuberculosis care-A path to recovery. N Engl J Med, 2022, 386(16):1490-1493. doi:10.1056/NEJMp2118145. |
[8] | Jassat W, Cohen C, Tempia S, et al. Risk factors for COVID-19-related in-hospital mortality in a high HIV and tuberculosis prevalence setting in South Africa: a cohort study. Lancet HIV, 2021, 8(9):e554 -e567. doi:10.1016/S2352-3018(21)00151-X. |
[9] | Western Cape Department of Health in collaboration with the National Institute for Communicable Diseases, South Africa. Risk Factors for Coronavirus Disease 2019 (COVID-19) Death in a Population Cohort Study from the Western Cape Province, South Africa. Clin Infect Dis, 2021, 73(7):e2005-e2015. doi:10.1093/cid/ciaa1198. |
[10] |
Motta I, Centis R, D’Ambrosio L, et al. Tuberculosis, COVID-19 and migrants: Preliminary analysis of deaths occurring in 69 patients from two cohorts. Pulmonology, 2020, 26(4):233-240. doi:10.1016/j.pulmoe.2020.05.002.
pmid: 32411943 |
[11] | Lai CC, Wang CY, Hsueh PR. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents?. J Microbiol Immunol Infect, 2020, 53(4):505-512. doi:10.1016/j.jmii.2020.05.013. |
[12] |
du Bruyn E, Stek C, Daroowala R, et al. Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa. Nat Commun, 2023, 14(1):188. doi:10.1038/s41467-022-35689-1.
pmid: 36635274 |
[13] | Vergori A, Boschini A, Notari S, et al. SARS-CoV-2 Specific Immune Response and Inflammatory Profile in Advanced HIV-Infected Persons during a COVID-19 Outbreak. Viruses, 2022, 14(7):1575. doi:10.3390/v14071575. |
[14] |
Wang Y, Feng R, Xu J, et al. An updated meta-analysis on the association between tuberculosis and COVID-19 severity and mortality. J Med Virol, 2021, 93(10):5682-5686. doi:10.1002/jmv.27119.
pmid: 34061374 |
[15] |
Shah VK, Firmal P, Alam A, et al. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol, 2020, 11:1949. doi:10.3389/fimmu.2020.01949.
pmid: 32849654 |
[16] | Vetter P, Eberhardt CS, Meyer B, et al. Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series. mSphere, 2020, 5(6):e00827-20. doi:10.1128/mSphere.00827-20. |
[17] |
Kim JS, Lee JY, Yang JW, et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11(1):316-329. doi:10.7150/thno.49713.
pmid: 33391477 |
[18] |
Agrati C, Carsetti R, Bordoni V, et al. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology, 2022, 167(3):287-302. doi:10.1111/imm.13564.
pmid: 35971810 |
[19] | Murdaca G, Di Gioacchino M, Greco M, et al. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells, 2021, 10(10):2754. doi:10.3390/cells10102754. |
[20] | Liu Q, Chi S, Dmytruk K, et al. Coronaviral infection and interferon response: the virus-host arms race and COVID-19. Viruses, 2022, 14(7):1349. doi:10.3390/v14071349. |
[21] | Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type Ⅰ Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev, 2021, 34(3):e00299-20. doi:10.1128/CMR.00299-20. |
[22] |
Torrelles JB, Schlesinger LS. Integrating Lung Physiology, Immunology, and Tuberculosis. Trends Microbiol, 2017, 25 (8):688-697. doi:10.1016/j.tim.2017.03.007.
pmid: 28366292 |
[23] | Mayer-Barber KD, Barber DL. Innate and Adaptive Cellular Immune Responses to Mycobacterium tuberculosis Infection. Cold Spring Harb Perspect Med, 2015, 5(12): a018424. doi:10.1101/cshperspect.a018424. |
[24] | Taha RA, Kotsimbos TC, Song YL, et al. IFN-gamma and IL-12 are increased in active compared with inactive tuberculosis. Am J Respir Crit Care Med, 1997, 155(3):1135-1139. doi:10.1164/ajrccm.155.3.9116999. |
[25] | Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis, 2002, 2(Suppl 2):ii54-ii58. doi:10.1136/ard.61.suppl_2.ii54. |
[26] |
Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 2018, 18(9):575-589. doi:10.1038/s41577-018-0025-3.
pmid: 29895826 |
[27] |
Roach DR, Bean AG, Demangel C, et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol, 2002, 168 (9):4620-4627. doi:10.4049/jimmunol.168.9.4620.
pmid: 11971010 |
[28] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(2):318-329. doi:10.1038/s41590-021-01121-x.
pmid: 35058616 |
[29] | Fatima S, Kumari A, Das G, et al. Tuberculosis vaccine: a journey from BCG to present. Life Sci, 2020, 252:117594. doi:10.1016/j.lfs.2020.117594. |
[30] | Sy KTL, Haw NJL, Uy J. Previous and active tuberculosis increases risk of death and prolongs recovery in patients with COVID-19. Infect Dis (Lond), 2020, 52(12):902-907. doi:10.1080/23744235.2020.1806353. |
[31] | Dheda K, Perumal T, Moultrie H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patientlevel impact, clinical presentation, and corrective interventions. Lancet Respir Med, 2022, 10(6):603-622. doi:10.1016/S2213-2600(22)00092-3. |
[32] | Gao Y, Liu M, Chen Y, et al. Association between tuberculosis and COVID-19 severity and mortality: A rapid systematic review and meta-analysis. J Med Virol, 2021, 93(1):194-196. doi:10.1002/jmv.26311. |
[33] | TB/COVID-19 Global Study Group. Tuberculosis and COVID-19 coinfection: description of the global cohort. Eur Respir J, 2022, 59(3):2102538. doi:10.1183/13993003.02538-2021. |
[34] | Mousquer GT, Peres A, Fiegenbaum M. Pathology of TB/COVID-19 Co-Infection: The phantom menace. Tuberculosis (Edinb), 2021, 126:102020. doi:10.1016/j.tube.2020.102020. |
[35] | Stochino C, Villa S, Zucchi P, et al. Clinical characteristics of COVID-19 and active tuberculosis co-infection in an Italian reference hospital. Eur Respir J, 2020, 56(1):2001708. doi:10.1183/13993003.01708-2020. |
[36] | Starshinova AA, Kudryavtsev I, Malkova A, et al. Molecular and Cellular Mechanisms of M.tuberculosis and SARS-CoV-2 Infections-Unexpected Similarities of Pathogenesis and What to Expect from Co-Infection. Int J Mol Sci, 2022, 23(4):2235. doi:10.3390/ijms23042235. |
[37] | Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol, 2013, 3:411. doi:10.3389/fimmu.2012.00411. |
[38] | Sakurai A, Sasaki T, Kato S, et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med, 2020, 383(9):885-886. doi:10.1056/NEJMc2013020. |
[39] |
Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, 75(7):1564-1581. doi:10.1111/all.14364.
pmid: 32396996 |
[40] | Tapela K, Ochieng’ Olwal C, Quaye O. Parallels in the pathogenesis of SARS-CoV-2 and M.Tuberculosis: a synergistic or antagonistic alliance?. Future Microbiol, 2020, 15:1691-1695. doi:10.2217/fmb-2020-0179. |
[41] | Shah T, Shah Z, Yasmeen N, et al. Pathogenesis of SARS-CoV-2 and Mycobacterium tuberculosis Coinfection. Front Immunol, 2022, 13:909011. doi:10.3389/fimmu.2022.909011. |
[42] | Pinheiro DO, Pessoa MSL, Lima CFC, et al. Tuberculosis and coronavirus disease 2019 coinfection. Rev Soc Bras Med Trop, 2020, 53:e20200671. doi:10.1590/0037-8682-0671-2020. |
[43] | Shariq M, Sheikh JA, Quadir N, et al. COVID-19 and Tuberculosis: the double whammy of respiratory pathogens. Eur Respir Rev, 2022, 31(164):210264. doi:10.1183/16000617.0264-2021. |
[44] | Oei W, Nishiura H. The relationship between tuberculosis and influenza death during the influenza (H1N1) pandemic from 1918-19. Comput Math Methods Med, 2012, 2012:124861. doi:10.1155/2012/124861. |
[45] | Moorlag SJCFM, Arts RJW, van Crevel R, et al. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect, 2019, 25(12):1473-1478. doi:10.1016/j.cmi.2019.04.020. |
[46] |
Covián C, Fernández-Fierro A, Retamal-Díaz A, et al. BCG-Induced Cross-Protection and Development of Trained Immunity: Implication for Vaccine Design. Front Immunol, 2019, 10:2806. doi:10.3389/fimmu.2019.02806.
pmid: 31849980 |
[47] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th 17 responses and innate trained immunity. J Innate Immun, 2014, 6(2):152-158. doi:10.1159/000355628.
pmid: 24192057 |
[48] | Netea MG, Joosten LA, Latz E, et al. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science, 2016, 352(6284):aaf1098. doi:10.1126/science.aaf1098. |
[49] | Chowdhury UN, Faruqe MO, Mehedy M, et al. Effects of Bacille Calmette Guerin (BCG) vaccination during COVID-19 infection. Comput Biol Med, 2021, 138:104891. doi:10.1016/j.compbiomed.2021.104891. |
[50] |
O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19?. Nat Rev Immunol, 2020, 20(6):335-337. doi:10.1038/s41577-020-0337-y.
pmid: 32393823 |
[51] | Urashima M, Otani K, Hasegawa Y, et al. BCG Vaccination and Mortality of COVID-19 across 173 Countries: An Ecological Study. Int J Environ Res Public Health, 2020, 17(15):5589. doi:10.3390/ijerph17155589. |
[52] |
Wickramasinghe D, Wickramasinghe N, Kamburugamuwa SA, et al. Correlation Between Immunity From BCG and the Morbidity and Mortality of COVID-19. Trop Dis Travel Med Vaccines, 2020, 6:17. doi:10.1186/s40794-020-00117-z.
pmid: 32868985 |
[53] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet, 2020, 395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0.
pmid: 32192578 |
[54] | Deshmukh R, Harwansh RK, Garg A, et al. COVID-19: Recent Insight in Genomic Feature, Pathogenesis, Immunological Biomarkers, Treatment Options and Clinical Updates on SARS-CoV-2. Curr Genomics, 2024, 25(2):69-87. doi:10.2174/0113892029291098240129113500. |
[55] | Rajamanickam A, Pavan Kumar N, Chandrasekaran P, et al. Effect of SARS-CoV-2 seropositivity on antigen-specific cytokine and chemokine responses in latent tuberculosis. Cytokine, 2022, 150:155785. doi:10.1016/j.cyto.2021.155785. |
[56] | Tadolini M, García-García JM, Blanc FX, et al. On Tuberculosis and COVID-19 co-infection. Eur Respir J, 2020, 56(2):2002328. doi:10.1183/13993003.02328-2020. |
[57] | Ruhwald M, Carmona S, Pai M. Learning from COVID-19 to reimagine tuberculosis diagnosis. Lancet Microbe, 2021, 2(5):e169 -e170. doi:10.1016/S2666-5247(21)00057-4. |
[58] | WHO Rapid Evidence Appraisal for COVID-19 Therapies REACT Working Group, Sterne JAC, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA, 2020, 324(13): 1330-1341. doi:10.1001/jama.2020.17023. |
[59] | Tang W, Leonhardt L, Pervez A, et al. A Case of Pleural Tuberculosis vs Latent Tuberculosis Reactivation as a Result of COVID-19 Infection and Treatment. J Community Hosp Intern Med Perspect, 2022, 12(4):89-93. doi:10.55729/2000-9666.1078. |
[60] | Gopalaswamy R, Subbian S. Corticosteroids for COVID-19 therapy: potential implications on tuberculosis. Int J Mol Sci, 2021, 22(7):3773. doi:10.3390/ijms22073773. |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Wan Ying, Pang Xuewen, Zhang Fan. Evaluation on effect of health promotion for tuberculosis prevention and control in Tianjin City from 2010 to 2020 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 22-29. |
[4] | Zhao Yongnian, Zhang Lijie, Wang Tongmin. Analysis of the epidemiological characteristics of reported pulmonary tuberculosis in Xinjiang Production and Construction Corps, 2014—2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 30-34. |
[5] | Zheng Jianli, Wu Yumei, Zhang Shili, Du Zixian, Li Turong, Chen Shisheng, Lin Wenge. Cost-effectiveness analysis of active tuberculosis screening among high-risk populations in Longyan City, Fujian Province [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 35-39. |
[6] | Yang Yan, Dong Wen, Chen Jianjun, Zhang Yu. Epidemiologic characteristics of pulmonary tuberculosis in Zhuxi County, Shiyan City (2014-2023) [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 40-45. |
[7] | Qi Wei, Zhao Enyi. The epidemic characteristics and the trends of pulmonary tuberculosis in elderly and non-elderly in central urban area, Tianjin from 2006 to 2020 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 46-54. |
[8] | Yan Qinghu, Xue Feng, Yu Yong, Qin Yi, Yan Qingmei, Cui Jia. The value of ultrasound-guided microwave ablation in the treatment of localized tuberculous lesions [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 55-60. |
[9] | Chen Jing, Qin Yali, Wang Mingdong, Yang Rubin, Wang Qian, Peng Yanqing, Qiu Jiyao, Zhang Xiao, Zhou Xinai. The value of QuantiFERON-TB Gold Plus in the clinical diagnosis of active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 61-67. |
[10] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[11] | Yan Wenhua, Chen Wenjun. The value of digital health education in the preventive management of caregivers of patients with bacterial positive pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 73-78. |
[12] | Liao Ying, Pang Yan, Zhao Jing, He Gaoqin, You Maolin, Wang Lei. Analysis on the reporting and case finding delay characteristics of pulmonary tuberculosis patients in Liangping District, Chongqing from 2018 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 8-13. |
[13] | Zhang Ying, Guo Chunhui. Research progress in the treatment of tuberculous tracheobronchial stenosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 87-93. |
[14] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[15] | Hu Xinyang, Gao Jingtao. Interpretation of WHO global tuberculosis report 2024 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 500-504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||