Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (5): 415-419.doi: 10.19983/j.issn.2096-8493.20220089
• Review Articles • Previous Articles Next Articles
Liu Yuanyuan1, Li Lu2, Wu Tuoya3, Lu Jie1()
Received:
2022-05-13
Online:
2022-10-20
Published:
2022-10-14
Contact:
Lu Jie
E-mail:lujiebch@163.com
Supported by:
CLC Number:
Liu Yuanyuan, Li Lu, Wu Tuoya, Lu Jie. Research progress on the Mce4 protein family of Mycobacterium tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(5): 415-419. doi: 10.19983/j.issn.2096-8493.20220089
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220089
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] |
Tornheim JA, Dooley KE. The Global Landscape of Tuberculosis Therapeutics. Annu Rev Med, 2019, 70:105-120. doi: 10.1146/annurev-med-040717-051150.
doi: 10.1146/annurev-med-040717-051150 pmid: 30403551 |
[3] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3):e28-e37. doi: 10.1016/s1473-3099(19)30625-5.
doi: 10.1016/s1473-3099(19)30625-5 |
[4] |
Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev, 2012, 36(3):514-532. doi: 10.1111/j.1574-6976.2012.00331.x.
doi: 10.1111/j.1574-6976.2012.00331.x pmid: 22320122 |
[5] |
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008, 105(11):4376-4380. doi: 10.1073/pnas.0711159105.
doi: 10.1073/pnas.0711159105 pmid: 18334639 |
[6] |
Saini NK, Sinha R, Singh P, et al. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner. Microb Pathog, 2016, 100:43-50. doi: 10.1016/j.micpath.2016.08.038.
doi: 10.1016/j.micpath.2016.08.038 URL |
[7] |
Casali N, Riley LW. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics, 2007, 8:60. doi: 10.1186/1471-2164-8-60.
doi: 10.1186/1471-2164-8-60 pmid: 17324287 |
[8] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL |
[9] | EMBL-EBI, PIR, SIB, Uniprot: The Universal Protein Resourse[DB/OL]. [2022-03-12]. http://www.uniport.org. |
[10] |
Wu CH, Apweiler R, Bairoch A, et al. The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res, 2006, 34(Database issue):D187-191. doi: 10.1093/nar/gkj161.
doi: 10.1093/nar/gkj161 pmid: 16381842 |
[11] |
Pasricha R, Chandolia A, Ponnan P, et al. Single nucleotide polymorphism in the genes of mce1 and mce 4 operons of Mycobacterium tuberculosis: analysis of clinical isolates and standard reference strains. BMC Microbiol, 2011, 11:41. doi: 10.1186/1471-2180-11-41.
doi: 10.1186/1471-2180-11-41 pmid: 21345183 |
[12] |
Olson ER. Influence of pH on bacterial gene expression. Mol Microbiol, 1993, 8(1):5-14. doi: 10.1111/j.1365-2958.1993.tb01198.x.
doi: 10.1111/j.1365-2958.1993.tb01198.x pmid: 8388532 |
[13] |
Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe, 2007, 2(5):352-364. doi: 10.1016/j.chom.2007.09.006.
doi: 10.1016/j.chom.2007.09.006 pmid: 18005756 |
[14] |
Rathor N, Garima K, Sharma NK, et al. Expression profile of mce 4 operon of Mycobacterium tuberculosis following environmental stress. Int J Mycobacteriol, 2016, 5(3):328-332. doi: 10.1016/j.ijmyco.2016.08.004.
doi: S2212-5531(16)30069-3 pmid: 27847019 |
[15] |
Rathor N, Chandolia A, Saini NK, et al. An insight into the regulation of mce 4 operon of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2013, 93(4):389-397. doi: 10.1016/j.tube.2013.03.007.
doi: 10.1016/j.tube.2013.03.007 URL |
[16] |
Griffin JE, Gawronski JD, Dejesus MA, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 2011, 7(9):e1002251. doi: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251 |
[17] |
Mohn WW, van der Geize R, Stewart GR, et al. The actinobacterial mce 4 locus encodes a steroid transporter. J Biol Chem, 2008, 283(51):35368-35374. doi: 10.1074/jbc.M805496200.
doi: 10.1074/jbc.M805496200 URL |
[18] |
Van der Geize R, Yam K, Heuser T, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A, 2007, 104(6):1947-1952. doi: 10.1073/pnas.0605728104.
doi: 10.1073/pnas.0605728104 URL |
[19] |
Klepp LI, Forrellad MA, Osella AV, et al. Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect, 2012, 14(7-8):590-599. doi: 10.1016/j.micinf.2012.01.007.
doi: 10.1016/j.micinf.2012.01.007 URL |
[20] |
Garcia-Fernandez J, Papavinasasundaram K, Galan B, et al. Molecular and functional analysis of the mce 4 operon in Mycobacterium smegmatis. Environ Microbiol, 2017, 19(9):3689-3699. doi: 10.1111/1462-2920.13869.
doi: 10.1111/1462-2920.13869 URL |
[21] |
McClean CM, Tobin DM. Early cell-autonomous accumulation of neutral lipids during infection promotes mycobacterial growth. PLoS One, 2020, 15(5):e0232251. doi: 10.1371/journal.pone.0232251.
doi: 10.1371/journal.pone.0232251 |
[22] |
Alonso MN, Malaga W, Mc Neil M, et al. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol, 2020, 171(5-6):203-210. doi: 10.1016/j.resmic.2020.04.001.
doi: 10.1016/j.resmic.2020.04.001 URL |
[23] |
Fenn K, Wong CT, Darbari VC. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Front Mol Biosci, 2019, 6:149. doi: 10.3389/fmolb.2019.00149.
doi: 10.3389/fmolb.2019.00149 URL |
[24] |
Kelkar DS, Kumar D, Kumar P, et al. Proteogenomic analysis of Mycobacterium tuberculosis by high resolution mass spectrome-try. Mol Cell Proteomics, 2011, 10(12):M111.011627. doi: 10.1074/mcp.M111.011445.
doi: 10.1074/mcp.M111.011445 |
[25] |
Khan S, Khan P, Hassan MI, et al. Protein stability: Determination of structure and stability of the transmembrane protein Mce4A from M.tuberculosis in membrane-like environment. Int J Biol Macromol, 2019, 126:488-495. doi: 10.1016/j.ijbiomac.2018.12.183.
doi: 10.1016/j.ijbiomac.2018.12.183 URL |
[26] |
吴姝, 伊正君, 付玉荣. 结核分枝杆菌Mce4A蛋白结构与功能的生物信息学分析. 中国病原生物学杂志, 2018, 13(7):704-708. doi: 10.13350/j.cjpd.180706.
doi: 10.13350/j.cjpd.180706 |
[27] |
Khan S, Khan FI, Mohammad T, et al. Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: A combined spectroscopic and molecular dynamic simulation studies. Int J Biol Macromol, 2018, 111:548-560. doi: 10.1016/j.ijbiomac.2017.12.160.
doi: S0141-8130(17)33808-4 pmid: 29329815 |
[28] |
Rank L, Herring LE, Braunstein M. Evidence for the Mycobacterial Mce4 Transporter Being a Multiprotein Complex. J Bacteriol, 2021, 203(10):e00685-20. doi: 10.1128/JB.00685-20.
doi: 10.1128/JB.00685-20 |
[29] |
Saini NK, Sharma M, Chandolia A, et al. Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol, 2008, 8:200. doi: 10.1186/1471-2180-8-200.
doi: 10.1186/1471-2180-8-200 URL |
[30] |
Sinha R, Singh P, Saini NK, et al. Methyl-accepting chemotaxis like Rv3499c (Mce4A) protein in Mycobacterium tuberculosis H37Rv mediates cholesterol-dependent survival. Tuberculosis (Edinb), 2018, 109:52-60. doi: 10.1016/j.tube.2018.01.004.
doi: 10.1016/j.tube.2018.01.004 URL |
[31] |
Singh P, Sinha R, Tyagi G, et al. PDIM and SL1 accumulation in Mycobacterium tuberculosis is associated with mce4A expression. Gene, 2018, 642:178-187. doi: 10.1016/j.gene.2017.09.062.
doi: 10.1016/j.gene.2017.09.062 URL |
[32] |
Xu G, Li Y, Yang J, et al. Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem, 2007, 302(1-2):1-7. doi: 10.1007/s11010-006-9395-0.
doi: 10.1007/s11010-006-9395-0 URL |
[33] |
He L, Zhou X, Yin X, et al. Comparative study of the growth and survival of recombinant Mycobacterium smegmatis expressing Mce4A and Mce4E from Mycobacterium bovis. DNA Cell Biol, 2015, 34(2):125-132. doi: 10.1089/dna.2014.2487.
doi: 10.1089/dna.2014.2487 URL |
[34] |
Voskuil MI, Schnappinger D, Visconti KC, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med, 2003, 198(5):705-713. doi: 10.1084/jem.20030205.
doi: 10.1084/jem.20030205 pmid: 12953092 |
[35] |
Rojas M, Olivier M, Gros P, et al. TNF-alpha and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol, 1999, 162(10):6122-6131.
pmid: 10229855 |
[36] |
MacMicking JD, North RJ, LaCourse R, et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A, 1997, 94(10):5243-5248. doi: 10.1073/pnas.94.10.5243.
doi: 10.1073/pnas.94.10.5243 pmid: 9144222 |
[37] |
Ma W, Jin W, He X, et al. Mycobacterium tuberculosis Induced Osteoblast Dysregulation Involved in Bone Destruction in Spinal Tuberculosis. Front Cell Infect Microbiol, 2022, 12:780272. doi: 10.3389/fcimb.2022.780272.
doi: 10.3389/fcimb.2022.780272 |
[38] |
Khan S, Islam A, Hassan MI, et al. Purification and structural characterization of Mce4A from Mycobacterium tuberculosis. Int J Biol Macromol, 2016, 93(Pt A):235-241. doi: 10.1016/j.ijbiomac.2016.06.059.
doi: 10.1016/j.ijbiomac.2016.06.059 URL |
[39] |
Goren MB, Brokl O, Schaefer WB. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun, 1974, 9(1):150-158. doi: 10.1128/iai.9.1.150-158.1974.
doi: 10.1128/iai.9.1.150-158.1974 pmid: 4271720 |
[40] |
Camacho LR, Constant P, Raynaud C, et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem, 2001, 276(23):19845-19854. doi: 10.1074/jbc.M100662200.
doi: 10.1074/jbc.M100662200 pmid: 11279114 |
[41] |
Madan R, Pandit K, Bhati L, et al. Mining the Mycobacterium tuberculosis proteome for identification of potential T-cell epitope based vaccine candidates. Microb Pathog, 2021, 157:104996. doi: 10.1016/j.micpath.2021.104996.
doi: 10.1016/j.micpath.2021.104996 |
[42] |
Blanco FC, Nunez-Garcia J, Garcia-Pelayo C, et al. Differential transcriptome profiles of attenuated and hypervirulent strains of Mycobacterium bovis. Microbes Infect, 2009, 11(12):956-963. doi: 10.1016/j.micinf.2009.06.006.
doi: 10.1016/j.micinf.2009.06.006 URL |
[43] |
Oftung F, Wiker HG, Deggerdal A, et al. A novel mycobacterial antigen relevant to cellular immunity belongs to a family of secreted lipoproteins. Scand J Immunol, 1997, 46(5):445-451. doi: 10.1046/j.1365-3083.1997.d01-150.x.
doi: 10.1046/j.1365-3083.1997.d01-150.x pmid: 9393626 |
[44] | 徐广贤, 赵德明, 周向梅, 等. 牛结核分枝杆菌 Mce4E蛋白对牛肺泡巨噬细胞 iNOs、TNF-α、IL-6和IL-12表达的影响. 中国农业大学学报, 2007, 12(1):1-6. |
[45] |
Pasricha R, Saini NK, Rathor N, et al. The Mycobacterium tuberculosis recombinant LprN protein of mce 4 operon induces Th-1 type response deleterious to protection in mice. Pathog Dis, 2014, 72(3):188-196. doi: 10.1111/2049-632X.12200.
doi: 10.1111/2049-632X.12200 pmid: 24989028 |
[46] |
Song H, Sandie R, Wang Y, et al. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2008, 88(6):526-544. doi: 10.1016/j.tube.2008.02.004.
doi: 10.1016/j.tube.2008.02.004 URL |
[47] |
Rodriguez DC, Ocampo M, Varela Y, et al. Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis, 2015, 73(3): ftu020. doi: 10.1093/femspd/ftu020.
doi: 10.1093/femspd/ftu020 |
[48] |
Qu Z, Zhou J, Zhou Y, et al. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1beta immune pathway. Sci Adv, 2020, 6(43): eaba4733. doi: 10.1126/sciadv.aba4733.
doi: 10.1126/sciadv.aba4733 |
[49] |
Yang H, Wang F, Guo X, et al. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov, 2021, 7(1):90. doi: 10.1038/s41421-021-00301-1.
doi: 10.1038/s41421-021-00301-1 pmid: 34608123 |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[5] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[6] | Meng Ting, Chen Jingfang, Deng Guofang, Lin Yi, Ruan Shujin, Liu Linlin, Li Mengjun. Research progress on mental vulnerability and anxiety-depression status in tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 583-589. |
[7] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[8] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[9] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[10] | Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 484-488. |
[11] | He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. |
[12] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[13] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
[14] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
[15] | Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 172-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||