Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (4): 328-333.doi: 10.19983/j.issn.2096-8493.20220073
• Review Articles • Previous Articles Next Articles
Lin Huimin1, Fu Yu1, Fang Zhangfu1,2, Xie Jiaxing1,3()
Received:
2022-04-20
Online:
2022-08-20
Published:
2022-08-16
Contact:
Xie Jiaxing
E-mail:jiaxingxie@126.com
Supported by:
CLC Number:
Lin Huimin, Fu Yu, Fang Zhangfu, Xie Jiaxing. Research progress on eosinophilic asthma[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(4): 328-333. doi: 10.19983/j.issn.2096-8493.20220073
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20220073
[1] |
GBD 2015 Chronic Respiratory Disease Collaborators Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med, 2017, 5 (9): 691-706. doi: 10.1016/S2213-2600(17)30293-X.
doi: 10.1016/S2213-2600(17)30293-X URL |
[2] |
Heaney LG, Perez de Llano L, Al-Ahmad M, et al. Eosinophilic and Noneosinophilic Asthma: An Expert Consensus Framework to Characterize Phenotypes in a Global Real-Life Severe Asthma Cohort. Chest, 2021, 160 (3): 814-830. doi: 10.1016/j.chest.2021.04.013.
doi: 10.1016/j.chest.2021.04.013 pmid: 33887242 |
[3] |
de Groot JC, Ten Brinke A, Bel EH. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res, 2015, 1 (1): 00024-2015. doi: 10.1183/23120541.00024-2015.
doi: 10.1183/23120541.00024-2015 |
[4] |
Hammad H, Lambrecht BN. The basic immunology of asthma. Cell, 2021, 184(9): 2521-2522. doi: 10.1016/j.cell.2021.04.019.
doi: 10.1016/j.cell.2021.04.019 URL |
[5] |
Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol, 2019, 144 (1): 1-12. doi: 10.1016/j.jaci.2019.05.031.
doi: 10.1016/j.jaci.2019.05.031 URL |
[6] |
Van Hulst G, Bureau F, Desmet CJ. Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int J Mol Sci, 2021, 22 (18): 10150. doi: 10.3390/ijms221810150.
doi: 10.3390/ijms221810150 URL |
[7] |
Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol, 2015, 16(1): 45-56. doi: 10.1038/ni.3049.
doi: 10.1038/ni.3049 pmid: 25521684 |
[8] |
Bohrer AC, Castro E, Hu Z, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med, 2021, 218 (10): e20210469. doi: 10.1084/jem.20210469.
doi: 10.1084/jem.20210469 |
[9] |
Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol, 2017, 17(12): 746-760. doi: 10.1038/nri.2017.95.
doi: 10.1038/nri.2017.95 pmid: 28891557 |
[10] |
Shah K, Ignacio A, McCoy KD, et al. The emerging roles of eosinophils in mucosal homeostasis. Mucosal Immunol, 2020, 13(4): 574-583. doi: 10.1038/s41385-020-0281-y.
doi: 10.1038/s41385-020-0281-y URL |
[11] |
Mesnil C, Raulier S, Paulissen G, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest, 2016, 126 (9): 3279-3295. doi: 10.1172/JCI85664.
doi: 10.1172/JCI85664 URL |
[12] |
Van Hulst G, Batugedara HM, Jorssen J, et al. Eosinophil diversity in asthma. Biochem Pharmacol, 2020, 179: 113963. doi: 10.1016/j.bcp.2020.113963.
doi: 10.1016/j.bcp.2020.113963 URL |
[13] |
Wechsler ME, Munitz A, Ackerman SJ, et al. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin Proc, 2021, 96 (10): 2694-2707. doi: 10.1016/j.mayocp.2021.04.025.
doi: 10.1016/j.mayocp.2021.04.025 pmid: 34538424 |
[14] |
Granger V, Zerimech F, Arab J, et al. Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults. Thorax, 2022, 77(6): 552-562. doi: 10.1136/thoraxjnl-2021-217343.
doi: 10.1136/thoraxjnl-2021-217343 URL |
[15] |
Choi Y, Le Pham D, Lee DH, et al. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp Mol Med, 2018, 50 (8): 1-8. doi: 10.1038/s12276-018-0136-8.
doi: 10.1038/s12276-018-0136-8 |
[16] |
Ueki S, Konno Y, Takeda M, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol, 2016, 137 (1): 258-267. doi: 10.1016/j.jaci.2015.04.041.
doi: 10.1016/j.jaci.2015.04.041 URL |
[17] |
Lu Y, Huang Y, Li J, et al. Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nat Cell Biol, 2021, 23 (10): 1060-1072. doi: 10.1038/s41556-021-00762-2.
doi: 10.1038/s41556-021-00762-2 URL |
[18] |
Grozdanovic MM, Doyle CB, Liu L, et al. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J Allergy Clin Immunol, 2020, 146 (2): 377-389.e10. doi: 10.1016/j.jaci.2020.01.013.
doi: S0091-6749(20)30100-7 pmid: 31982451 |
[19] |
Persson EK, Verstraete K, Heyndrickx I, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science, 2019, 364 (6442): eaaw4295. doi: 10.1126/science.aaw4295.
doi: 10.1126/science.aaw4295 |
[20] |
Mack EA, Pear WS. Transcription factor and cytokine regulation of eosinophil lineage commitment. Curr Opin Hematol, 2020, 27 (1): 27-33. doi: 10.1097/MOH.0000000000000552.
doi: 10.1097/MOH.0000000000000552 URL |
[21] |
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosino-phil Granulocytes. Biology (Basel), 2020, 9 (12): 457. doi: 10.3390/biology9120457.
doi: 10.3390/biology9120457 |
[22] |
Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine, 2015, 75 (1): 68-78. doi: 10.1016/j.cyto.2015.05.014.
doi: 10.1016/j.cyto.2015.05.014 URL |
[23] |
Godar M, Deswarte K, Vergote K, et al. A bispecific antibody strategy to target multiple type 2 cytokines in asthma. J Allergy Clin Immunol, 2018, 142 (4): 1185-1193. e4. doi: 10.1016/j.jaci.2018.06.002.
doi: 10.1016/j.jaci.2018.06.002 URL |
[24] |
Gowthaman U, Chen JS, Zhang B, et al. Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science, 2019, 365 (6456): eaaw6433. doi: 10.1126/science.aaw6433.
doi: 10.1126/science.aaw6433 |
[25] |
Sugita K, Steer CA, Martinez-Gonzalez I, et al. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. J Allergy Clin Immunol, 2018, 141 (1): 300-310.e11. doi: 10.1016/j.jaci.2017.02.038.
doi: 10.1016/j.jaci.2017.02.038 URL |
[26] |
Wang W, Li Y, Lv Z, et al. Bronchial Allergen Challenge of Patients with Atopic Asthma Triggers an Alarmin (IL-33, TSLP, and IL-25) Response in the Airways Epithelium and Submucosa. J Immunol, 2018, 201 (8): 2221-2231. doi: 10.4049/jimmunol.1800709.
doi: 10.4049/jimmunol.1800709 pmid: 30185520 |
[27] |
李赞华. 白细胞介素25与33在支气管哮喘发生中的作用. 结核病与肺部健康杂志, 2017, 6 (2): 190-192. doi: 10.3969/j.issn.2095-3755.2017.02.024.
doi: 10.3969/j.issn.2095-3755.2017.02.024 |
[28] |
Machida K, Aw M, Salter BMA, et al. The Role of the TL1A/DR3 Axis in the Activation of Group 2 Innate Lym-phoid Cells in Subjects with Eosinophilic Asthma. Am J Respir Crit Care Med, 2020, 202 (8): 1105-1114. doi: 10.1164/rccm.201909-1722OC.
doi: 10.1164/rccm.201909-1722OC URL |
[29] |
Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: Eosinophilic airway inflammation in nonallergic asthma. Nat Med, 2013, 19 (8): 977-979. doi: 10.1038/nm.3300.
doi: 10.1038/nm.3300 pmid: 23921745 |
[30] |
Brandt EB, Bolcas PE, Ruff BP, et al. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity. Allergy, 2020, 75 (9): 2254-2266. doi: 10.1111/all.14181.
doi: 10.1111/all.14181 pmid: 31922608 |
[31] |
Brandt EB, Bolcas PE, Ruff BP, et al. TSLP contributes to allergic airway inflammation induced by diesel exhaust particle exposure in an experimental model of severe asthma. Clin Exp Allergy, 2020, 50(1):121-124. doi: 10.1111/cea.13512.
doi: 10.1111/cea.13512 pmid: 31610053 |
[32] |
Michaudel C, Mackowiak C, Maillet I, et al. Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33 J Allergy Clin Immunol, 2018, 142(3): 942-958. doi: 10.1016/j.jaci.2017.11.044.
doi: S0091-6749(18)30028-9 pmid: 29331644 |
[33] |
Hiraishi Y, Yamaguchi S, Yoshizaki T, et al. IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep, 2018, 8 (1): 18052. doi: 10.1038/s41598-018-36440-x.
doi: 10.1038/s41598-018-36440-x URL |
[34] |
Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest, 2019, 129(4): 1441-1451. doi: 10.1172/JCI124606.
doi: 10.1172/JCI124606 URL |
[35] |
Kato A. Group 2 Innate Lymphoid Cells in Airway Diseases. Chest, 2019, 156 (1): 141-149. doi: 10.1016/j.chest.2019.04.101.
doi: 10.1016/j.chest.2019.04.101 URL |
[36] |
Lee HS, Park DE, Lee JW, et al. Role of interleukin-23 in the development of nonallergic eosinophilic inflammation in a murine model of asthma. Exp Mol Med, 2020, 52(1): 92-104. doi: 10.1038/s12276-019-0361-9.
doi: 10.1038/s12276-019-0361-9 URL |
[37] |
Wangberg H, White AA. Aspirin-exacerbated respiratory disease. Curr Opin Immunol, 2020, 66: 9-13. doi: 10.1016/j.coi.2020.02.006.
doi: S0952-7915(20)30022-4 pmid: 32299015 |
[38] |
Li KL, Lee AY, Abuzeid WM. Aspirin Exacerbated Respiratory Disease: Epidemiology, Pathophysiology, and ManagementMed Sci (Basel), 2019, 7(3): 45. doi: 10.3390/medsci7030045.
doi: 10.3390/medsci7030045 |
[39] |
Reddel HK, Bacharier LB, Bateman ED, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J, 2021, 59 (1): 2102730. doi: 10.1183/13993003.02730-2021.
doi: 10.1183/13993003.02730-2021 URL |
[40] |
Bakakos A, Loukides S, Bakakos P. Severe Eosinophilic Asthma. J Clin Med, 2019, 8(9): 1375. doi: 10.3390/jcm8091375.
doi: 10.3390/jcm8091375 URL |
[41] |
Burgess JK, Jonker MR, Berg M, et al.Periostin: contributor to abnormal airway epithelial function in asthma? Eur Respir J, 2021, 57 (2): 2001286. doi: 10.1183/13993003.01286-2020.
doi: 10.1183/13993003.01286-2020 URL |
[42] |
Chen M, Shepard K 2nd, Yang M, et al. Overlap of allergic, eosinophilic and type 2 inflammatory subtypes in moderate-to-severe asthma. Clin Exp Allergy, 2021, 51 (4): 546-555. doi: 10.1111/cea.13790.
doi: 10.1111/cea.13790 URL |
[43] |
de Groot JC, Storm H, Amelink M, et al. Clinical profile of patients with adult-onset eosinophilic asthma. ERJ Open Res, 2016, 2 (2): 00100-2015. doi: 10.1183/23120541.00100-2015.
doi: 10.1183/23120541.00100-2015 |
[44] |
Bousquet J, Humbert M, Gibson PG, et al. Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. J Allergy Clin Immunol Pract, 2021, 9 (7): 2702-2714. doi: 10.1016/j.jaip.2021.01.011.
doi: 10.1016/j.jaip.2021.01.011 URL |
[45] |
Humbert M, Taillé C, Mala L, et al. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study. Eur Respir J, 2018, 51 (5):1702523. doi: 10.1183/13993003.02523-2017.
doi: 10.1183/13993003.02523-2017 |
[46] |
Busse WW, Bleecker ER, FitzGerald JM, et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med, 2019, 7 (1): 46-59. doi: 10.1016/S2213-2600(18)30406-5.
doi: 10.1016/S2213-2600(18)30406-5 URL |
[47] |
Agache I, Song Y, Rocha C, et al. Efficacy and safety of treatment with dupilumab for severe asthma: A systematic review of the EAACI guidelines-Recommendations on the use of biologicals in severe asthma. Allergy, 2020, 75 (5): 1058-1068. doi: 10.1111/all.14268.
doi: 10.1111/all.14268 pmid: 32154939 |
[48] |
Agache I, Beltran J, Akdis C, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines-recommendations on the use of biologicals in severe asthma. Allergy, 2020, 75 (5): 1023-1042. doi: 10.1111/all.14221.
doi: 10.1111/all.14221 pmid: 32034960 |
[49] |
Corren J, Parnes JR, Wang L, et al. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med, 2017, 377 (10): 936-946. doi: 10.1056/NEJMoa1704064.
doi: 10.1056/NEJMoa1704064 URL |
[50] |
Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med, 2021, 384 (19): 1800-1809. doi: 10.1056/NEJMoa2034975.
doi: 10.1056/NEJMoa2034975 URL |
[1] | Chen Jing, Qin Yali, Wang Mingdong, Yang Rubin, Wang Qian, Peng Yanqing, Qiu Jiyao, Zhang Xiao, Zhou Xinai. The value of QuantiFERON-TB Gold Plus in the clinical diagnosis of active pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 61-67. |
[2] | Liao Ying, Pang Yan, Zhao Jing, He Gaoqin, You Maolin, Wang Lei. Analysis on the reporting and case finding delay characteristics of pulmonary tuberculosis patients in Liangping District, Chongqing from 2018 to 2023 [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 8-13. |
[3] | Zhu Yixing, Chang De. Current status and prospects of management of chronic respiratory diseases [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 567-572. |
[4] | Yunnan Provincial Clinical Medical Center for Infectious Disease, Professional Committee of Respiratory Medicine of Yunnan Hospital Association, Professional Committee of Early Diagnosis and Treatment of Pulmonary Nodules of Kunming Medical Association. Expert consensus on standardized diagnosis and treatment of pulmonary nodules [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 388-397. |
[5] | Liu Weijian, Xu Yuxiang, Zhan Shenlin, Zhang Peize, Qin Hongjuan. Clinical characteristics of patients died of active tuberculosis with different ages in tuberculosis specialized hospital [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 445-452. |
[6] | Zeng Qin, Zeng Fanqing, He Kun, Yang Honghong, Liu Min. The value of routine pathology microscopy, acid-fast staining, and TB-DNA in diagnosis of lymph node tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 461-467. |
[7] | Xue Min, Wei Xiaoling, Liu Miao, Wang Jing, Zhang Yun, Ma Xiang. Analysis of factors affecting the onset age of asthma in children [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 468-475. |
[8] | Shi Xu, Chen Ruchong, Li Jing. Research progress on the concept discrimination and treatment of type 2 inflammation in asthma [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 489-494. |
[9] | Cai Xiaoting, Wu Xiaoying, He Liqian, Jiang Kunhong. A study on the correlation between family doctor contract services and clinical characteristics of pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 333-338. |
[10] | Li Yabo, Fan Lijuan, Sun Xiuli, Gou Liangzhi, Ren Beiying, Shi Juanzi, Wang Fang, Ma Xiaoling, Xie Yonghong, Liu Xin, Wu Qianhong. Progress in tuberculosis infection screening, diagnosis and treatment of female infertility patients before in vitro fertilization-embryo transfer [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 352-357. |
[11] | Su XingYue, Wang Beilei, Ma Xiang. Single nucleotide polymorphisms and related genes in Chinese children with type 2 inflammatory asthma [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 370-375. |
[12] | Yang Hongjie, Qi Fei, Zhang Hongmei, Wu Hongbo, Hu Aimin, Zhang Tongmei. Current status of diagnosis and clinical treatment on co-existent pulmonary tuberculosis and lung cancer [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 273-278. |
[13] | Sha Min, Zhu Weidong, Jin Yifan, Lyu Leilei, Chen Cheng. Multidimensional differential diagnosis of pulmonary tuberculosis and pulmonary sarcoidosis accompanied by granulomatous inflammation of pulmonary tissue [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 135-142. |
[14] | National Center of Medical Quality Control for Respiratory Diseases , Tuberculosis Branch of Chinese Medical Association , Tuberculosis Control Branch of Chinese Antituberculosis Association , China⁃Japan Friendship Hospital . Clinical practice guidelines for early detection of pulmonary tuberculosis in general medical facilities [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 1-14. |
[15] | Niu Peixuan, A Ertai, Li Yuanyuan, Guan Wenlong, Zheng Tian, Su Dongdong, Du Qingqing, Du Caiyun. Epidemiological characteristics analysis of hospitalized patients with extrapulmonary tuberculosis in Xinjiang Uygur Autonomous Region from 2018 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 51-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||