Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (3): 277-282.doi: 10.3969/j.issn.2096-8493.20210069
• Review Articles • Previous Articles Next Articles
LI Jing, ZHANG Yan, WU Qian-hong()
Received:
2021-07-17
Online:
2021-09-30
Published:
2021-09-24
Contact:
WU Qian-hong
E-mail:Wuqianhong99@126.com
LI Jing, ZHANG Yan, WU Qian-hong. Research progress on free DNA detection of Mycobacterium tuberculosis of non-sputum samples in tuberculosis diagnosis[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(3): 277-282. doi: 10.3969/j.issn.2096-8493.20210069
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.20210069
[1] | World Health Organization. Global tuberculosis report 2020. Geneva:World Health Organization, 2020. |
[2] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med, 2015, 3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8.
doi: 10.1016/S2213-2600(15)00095-8 URL |
[3] |
Younis H, Kerschbaumer I, Moon JY, et al. Combining urine lipoarabinomannan with antibody detection as a simple non-sputum-based screening method for HIV-associated tuberculosis. PLoS One, 2019, 14(6):e0218606. doi: 10.1371/journal.pone.0218606.
doi: 10.1371/journal.pone.0218606 URL |
[4] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[5] |
Poeta P, Silva V, Guedes A, et al. Tuberculosis in the 21th century: Current status of diagnostic methods. Exp Lung Res, 2018, 44(7):352-360. doi: 10.1080/01902148.2018.1545880.
doi: 10.1080/01902148.2018.1545880 URL |
[6] |
Traver S, Assou S, Scalici E, et al. Cell-free nucleic acids as non-invasive biomarkers of gynecological cancers, ovarian, endometrial and obstetric disorders and fetal aneuploidy. Hum Reprod Update, 2014, 20(6):905-923. doi: 10.1093/humupd/dmu031.
doi: 10.1093/humupd/dmu031 pmid: 24973359 |
[7] |
Viorritto IC, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol, 2007, 122(2):125-134. doi: 10.1016/j.clim.2006.07.012.
doi: 10.1016/j.clim.2006.07.012 pmid: 17029966 |
[8] |
Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci, 2009, 46(1):1-24. doi: 10.1080/10408360802485875.
doi: 10.1080/10408360802485875 URL |
[9] |
Delgado PO, Alves BC, Gehrke Fde S, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol, 2013, 34(2):983-986. doi: 10.1007/s13277-012-0634-6.
doi: 10.1007/s13277-012-0634-6 URL |
[10] |
Aucamp J, Bronkhorst AJ, Badenhorst CPS, et al. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc, 2018, 93(3):1649-1683. doi: 10.1111/brv.12413.
doi: 10.1111/brv.12413 URL |
[11] |
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol, 2009, 7(2):99-109. doi: 10.1038/nrmicro2070.
doi: 10.1038/nrmicro2070 pmid: 19148178 |
[12] |
Fink SL, Cookson BT. Apoptosis pyroptosis and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun, 2005, 73(4):1907-1916. doi: 10.1128/IAI.73.4.1907-1916.2005.
doi: 10.1128/IAI.73.4.1907-1916.2005 URL |
[13] | Xue Y, Li H, Zhang Q, et al. Noninvasive Prenatal Screening for Fetal Sex Chromosome Aneuploidies at Two Next-Generation Sequencing Platforms. Ann Clin Lab Sci, 2018, 48(4):501-505. |
[14] |
Parsons HA, Beaver JA, Park BH. Circulating Plasma Tumor DNA. Adv Exp Med Biol, 2016, 882:259-276. doi: 10.1007/978-3-319-22909-6_11.
doi: 10.1007/978-3-319-22909-6_11 |
[15] |
Zhang Q, Hu G, Yang Q, et al. A multiplex methylation-specific PCR assay for the detection of early-stage ovarian cancer using cell-free serum DNA. Gynecol Oncol, 2013, 130(1):132-139. doi: 10.1016/j.ygyno.2013.04.048.
doi: 10.1016/j.ygyno.2013.04.048 pmid: 23623832 |
[16] |
Kamat AA, Baldwin M, Urbauer D, et al. Plasma cell-free DNA in ovarian cancer: an independent prognostic biomarker. Cancer, 2010, 116(8):1918-1925. doi: 10.1002/cncr.24997.
doi: 10.1002/cncr.24997 URL |
[17] |
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med, 2014, 6(224): 224ra24. doi: 10.1126/scitranslmed.3007094.
doi: 10.1126/scitranslmed.3007094 |
[18] |
Siravegna G, Marsoni S, Siena S, et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol, 2017, 14(9):531-548. doi: 10.1038/nrclinonc.2017.14.
doi: 10.1038/nrclinonc.2017.14 pmid: 28252003 |
[19] |
Husain H, Melnikova VO, Kosco K, et al. Monitoring Daily Dynamics of Early Tumor Response to Targeted Therapy by Detecting Circulating Tumor DNA in Urine. Clin Cancer Res, 2017, 23(16):4716-4723. doi: 10.1158/1078-0432.CCR-17-0454.
doi: 10.1158/1078-0432.CCR-17-0454 pmid: 28420725 |
[20] |
Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutation and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med, 2015, 7(293): 293ra104. doi: 10.1126/scitranslmed.aaa8507.
doi: 10.1126/scitranslmed.aaa8507 |
[21] |
Miller AM, Shan RH, Pentsova EI, et al. Tracking tumor evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature, 2019, 565(7741):654-658. doi: 10.1038/s41586-019-0882-3.
doi: 10.1038/s41586-019-0882-3 URL |
[22] |
Kang Q, Henry NL, Paoletti C, et al. Comparative analysis of circulating tumor DNA stability In K3EDTA, Streck, and CellSave blood collection tubes. Clin Biochem, 2016, 49(18):1354-1360. doi: 10.1016/j.clinbiochem.2016.03.012.
doi: 10.1016/j.clinbiochem.2016.03.012 URL |
[23] |
Parpart-Li S, Bartlett B, Popoli M, et al. The Effect of Preservative and Temperature on the Analysis of Circulating Tumor DNA. Clin Cancer Res, 2017, 23(10):2471-2477. doi: 10.1158/1078-0432.CCR-16-1691.
doi: 10.1158/1078-0432.CCR-16-1691 pmid: 27827317 |
[24] |
Sherwood JL, Corcoran C, Brown H, et al. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC). PLoS One, 2016, 11(2):e0150197. doi: 10.1371/journal.pone.0150197.
doi: 10.1371/journal.pone.0150197 URL |
[25] |
Toro PV, Erlanger B, Beaver JA, et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem, 2015, 48(15):993-998. doi: 10.1016/j.clinbiochem.2015.07.097.
doi: 10.1016/j.clinbiochem.2015.07.097 URL |
[26] |
Medina Diaz I, Nocon A, Mehnert DH, et al. Performance of Streck cfDNA Blood Collection Tubes for Liquid Biopsy Testing. PLoS One, 2016, 11(11):e0166354. doi: 10.1371/journal.pone.0166354.
doi: 10.1371/journal.pone.0166354 URL |
[27] |
Leng S, Zheng J, Jin Y, et al. Plasma cell-free DNA level and its integrity as biomarkers to distinguish non-small cell lung cancer from tuberculosis. Clin Chim Acta, 2018, 477:160-165. doi: 10.1016/j.cca.2017.11.003.
doi: 10.1016/j.cca.2017.11.003 URL |
[28] |
Murugesan K, Hogan CA, Palmer Z, et al. Investigation of Preanalytical Variables Impacting Pathogen Cell-Free DNA in Blood and Urine. J Clin Microbiol, 2019, 57(11):e00782-19. doi: 10.1128/JCM.00782-19.
doi: 10.1128/JCM.00782-19 |
[29] |
Burnham P, Kim MS, Agbor-Enoh S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci Rep, 2016, 6:27859. doi: 10.1038/srep27859.
doi: 10.1038/srep27859 pmid: 27297799 |
[30] |
Underhill HR, Kitzman JO, Hellwig S, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet, 2016, 12(7):e1006162. doi: 10.1371/journal.pgen.1006162.
doi: 10.1371/journal.pgen.1006162 URL |
[31] |
Yu SC, Lee SW, Jiang P, et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem, 2013, 59(8):1228-1237. doi: 10.1373/clinchem.2013.203679.
doi: 10.1373/clinchem.2013.203679 URL |
[32] |
Yao W, Mei C, Nan X, et al. Evaluation and comparison of in vitro degradation kinetics of DNA in serum, urine and saliva: A qualitative study. Gene, 2016, 590(1):142-148. doi: 10.1016/j.gene.2016.06.033.
doi: 10.1016/j.gene.2016.06.033 URL |
[33] |
Tsui NB, Jiang P, Chow KC, et al. High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS One, 2012, 7(10):e48319. doi: 10.1371/journal.pone.0048319.
doi: 10.1371/journal.pone.0048319 URL |
[34] |
Burnham P, Dadhania D, Heyang M, et al. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat Commun, 2018, 9(1):2412. doi: 10.1038/s41467-018-04745-0.
doi: 10.1038/s41467-018-04745-0 pmid: 29925834 |
[35] |
Lu JL, Liang ZY. Circulating free DNA in the era of precision oncology: Pre- and post-analytical concerns. Chronic Dis Transl Med, 2016, 2(4):223-230. doi: 10.1016/j.cdtm.2016.12.001.
doi: 10.1016/j.cdtm.2016.12.001 |
[36] |
Franczak C, Filhine-Tresarrieu P, Gilson P, et al. Technical considerations for circulating tumor DNA detection in oncology. Expert Rev Mol Diagn, 2019, 19(2):121-135. doi: 10.1080/14737159.2019.1568873.
doi: 10.1080/14737159.2019.1568873 pmid: 30648442 |
[37] |
Mauger F, Dulary C, Daviaud C, et al. Comprehensive evalua-tion of methods to isolate, quantify, and characterize circula-ting cell-free DNA from small volumes of plasma. Anal Bioanal Chem, 2015, 407(22):6873-6878. doi: 10.1007/s00216-015-8846-4.
doi: 10.1007/s00216-015-8846-4 URL |
[38] |
潘杰, 吴玉梅, 黄学文, 等. 国产血浆游离DNA提取试剂盒的性能评价. 江苏大学学报(医学版), 2018, 28(2):163-168. doi: 10.13312/j.issn.1671-7783.y180003.
doi: 10.13312/j.issn.1671-7783.y180003 |
[39] |
Vogt SL, Patel M, Lakha A, et al. Feasibility of Cell-Free DNA Collection and Clonal Immunoglobulin Sequencing in South African Patients With HIV-Associated Lymphoma. JCO Glob Oncol, 2021, 7:611-621. doi: 10.1200/GO.20.00651.
doi: 10.1200/GO.20.00651 |
[40] |
Oreskovic A, Brault ND, Panpradist N, et al. Analytical Comparison of Methods for Extraction of Short Cell-Free DNA from Urine. J Mol Diagn, 2019, 21(6):1067-1078. doi: 10.1016/j.jmoldx.2019.07.002.
doi: S1525-1578(19)30354-X pmid: 31442674 |
[41] |
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med, 2014, 20(5):548-554. doi: 10.1038/nm.3519.
doi: 10.1038/nm.3519 pmid: 24705333 |
[42] |
Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol, 2016, 34(5):547-555. doi: 10.1038/nbt.3520.
doi: 10.1038/nbt.3520 pmid: 27018799 |
[43] |
Phallen J, Sausen M, Adleff V, et al. Direct detection of early stage cancers using circulating tumor DNA. Sci Transl Med, 2017, 9(403): eaan2415. doi: 10.1126/scitranslmed.aan2415.
doi: 10.1126/scitranslmed.aan2415 |
[44] |
Paweletz CP, Sacher AG, Raymond CK, et al. Bias corrected targeted next generation sequencing for rapid, multiplexed detection of actionable alterations in cell free DNA from advanced lung cancer patients. Clin Cancer Res, 2016, 22(4):915-922. doi: 10.1158/1078-0432.CCR-15-1627-T.
doi: 10.1158/1078-0432.CCR-15-1627-T pmid: 26459174 |
[45] |
Click ES, Murithi W, Ouma GS, et al. Detection of Apparent Cell-free M.tuberculosis DNA from Plasma. Sci Rep, 2018, 8(1):645. doi: 10.1038/s41598-017-17683-6.
doi: 10.1038/s41598-017-17683-6 pmid: 29330384 |
[46] |
Yang X, Che N, Duan H, et al. Cell-free Mycobacterium tuberculosis DNA test in pleural effusion for tuberculous pleurisy: a diagnostic accuracy study. Clin Microbiol Infect, 2020, 26(8): 1089.e1-1089.e6. doi: 10.1016/j.cmi.2019.11.026.
doi: 10.1016/j.cmi.2019.11.026 |
[47] |
Yamamoto M, Ushio R, Watanabe H, et al. Detection of Mycobacterium tuberculosis-derived DNA in circulating cell-free DNA from a patient with disseminated infection using digital PCR. Int J Infect Dis, 2018, 66:80-82. doi: 10.1016/j.ijid.2017.11.01.
doi: S1201-9712(17)30300-4 pmid: 29154831 |
[48] |
Pan SW, Su WJ, Chan YJ, et al. Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One, 2021, 16(6):e0253879. doi: 10.1371/journal.pone.0253879.
doi: 10.1371/journal.pone.0253879 URL |
[49] |
MacLean E, Nathavitharana RR. Progress toward Developing Sensitive Non-Sputum-Based Tuberculosis Diagnostic Tests: the Promise of Urine Cell-Free DNA. J Clin Microbiol, 2021, 59(8):e0070621. doi: 10.1128/JCM.00706-21.
doi: 10.1128/JCM.00706-21 |
[50] |
Che N, Yang X, Liu Z, et al. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion. J Clin Microbiol, 2017, 55(5):1526-1532. doi: 10.1128/JCM.02473-16.
doi: 10.1128/JCM.02473-16 URL |
[51] |
寿娟, 谢青梅, 易伟, 等. 胸水游离DNA的结核杆菌检测在结核病诊断中的价值. 中华病理学杂志, 2018, 47(6):465-467. doi: 10.3760/cma.j.issn.0529-5807.2018.06.016.
doi: 10.3760/cma.j.issn.0529-5807.2018.06.016 |
[52] |
Li X, Du W, Wang Y, et al. Rapid Diagnosis of Tuberculosis Meningitis by Detecting Mycobacterium tuberculosis Cell-Free DNA in Cerebrospinal Fluid. Am J Clin Pathol, 2020, 153(1):126-130. doi: 10.1093/ajcp/aqz135.
doi: 10.1093/ajcp/aqz135 URL |
[53] |
Sharma P, Anthwal D, Kumari P, et al. Utility of circulating cell-free Mycobacterium tuberculosis DNA for the improved diagnosis of abdominal tuberculosis. PLoS One, 2020, 15(8):e0238119. doi. org/10.1371/journal.pone.0238119.
doi: org/10.1371/journal.pone.0238119 URL |
[54] |
Yu G, Shen Y, Ye B, et al. Diagnostic accuracy of Mycobacterium tuberculosis cell-free DNA for tuberculosis: A systematic review and meta-analysis. PLoS One, 2021, 16(6):e0253658. doi: 10.1371/journal.pone.0253658.
doi: 10.1371/journal.pone.0253658 URL |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[5] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[6] | Meng Ting, Chen Jingfang, Deng Guofang, Lin Yi, Ruan Shujin, Liu Linlin, Li Mengjun. Research progress on mental vulnerability and anxiety-depression status in tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 583-589. |
[7] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[8] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[9] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[10] | Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 484-488. |
[11] | He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. |
[12] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[13] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
[14] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
[15] | Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 172-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||