Journal of Tuberculosis and Lung Disease ›› 2021, Vol. 2 ›› Issue (1): 13-17.doi: 10.3969/j.issn.2096-8493.2021.01.004
• Special Topic • Previous Articles Next Articles
ZHANG Zhi-guo1, GUO Hai-ping2, PANG Yu2()
Received:
2021-02-24
Online:
2021-03-30
Published:
2021-03-24
Contact:
PANG Yu
E-mail:pangyupound@163.com
ZHANG Zhi-guo, GUO Hai-ping, PANG Yu. Considerations for the application of laboratory diagnostics in detecting drug-resistant tuberculosis[J]. Journal of Tuberculosis and Lung Disease , 2021, 2(1): 13-17. doi: 10.3969/j.issn.2096-8493.2021.01.004
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.3969/j.issn.2096-8493.2021.01.004
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | 刘斌, 刘君, 裴豪, 等. 结核分枝杆菌实验室及其药敏检测技术进展. 中华医院感染学杂志, 2020,30(15):2396-2400. doi: 10.11816/cn.ni.2020-191954. |
[3] |
Wells WA, Boehme CC, Cobelens FG, et al. Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis, 2013,13(5):449-458. doi: 10.1016/S1473-3099(13)70025-2.
doi: 10.1016/S1473-3099(13)70025-2 URL |
[4] | 王丽娜. 痰液结核杆菌涂片及培养在初诊结核病中的应用比较. 罕少疾病杂志, 2019,26(5):19-21. doi: 10.3969/j.issn.1009-3257.2019.05.008. |
[5] |
Kelly-Cirino CD, Musisi E, Byanyima P, et al. Investigation of OMNIgene·SPUTUM performance in delayed tuberculosis testing by smear, culture, and Xpert MTB/RIF assays in Uganda. J Epidemiol Glob Health, 2017,7(2):103-109. doi: 10.1016/j.jegh.2017.04.001.
doi: 10.1016/j.jegh.2017.04.001 URL pmid: 28413105 |
[6] | 徐成良, 陈兆俊, 陆英, 等. 结核分枝杆菌两种培养方法比较. 上海预防医学, 2016,28(8):563-564. doi: 10.19428/j.cnki.sjpm.2016.08.016. |
[7] | 李仁忠, 王黎霞. 实验室新技术用于耐药结核病诊断流程的建议. 中华结核和呼吸杂志, 2016,39(7):568-569. doi: 10.3760/cma.j.issn.1001-0939.2016.07.020. |
[8] | 刘金娜. 微量液体培养基最低抑菌浓度法与罗氏比例法在结核分枝杆菌药敏试验中的价值比较. 实用临床医药杂志, 2020,24(17):28-30,40. doi: 10.7619/jcmp.202017007. |
[9] | 逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021,14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05. |
[10] | Harries AD, Kumar AMV. Challenges and Progress with Diagnosing Pulmonary Tuberculosis in Low- and Middle-Income Countries. Diagnostics (Basel), 2018,8(4):78. doi: 10.3390/diagnostics8040078. |
[11] | 赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 88-105. |
[12] |
Chauhan DS, Sharma R, Parashar D, et al. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis in clinical spe-cimens by real-time po8lymerase chain reaction hybridisation probe method. Indian J Med Microbiol, 2018,36(2):211-216. doi: 10.4103/ijmm.IJMM_14_304.
doi: 10.4103/ijmm.IJMM_14_304 URL pmid: 30084413 |
[13] | 饶兵. 线性探针技术在耐药结核病诊断中的应用. 东方药膳, 2020 (8):35. |
[14] | 刘立宾, 王静, 李浩, 等. 三种分子方法检测结核分枝杆菌利福平耐药性的比较. 中华临床感染病杂志, 2020,13(4):270-275. doi: 10.3760/cma.j.issn.1674-2397.2020.04.004. |
[15] |
MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020,58(10):e01582-19. doi: 10.1128/JCM.01582-19.
doi: 10.1128/JCM.01582-19 URL pmid: 32759357 |
[16] |
Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis. Lancet Respir Med, 2015,3(6):451-461. doi: 10.1016/S2213-2600(15)00095-8.
doi: 10.1016/S2213-2600(15)00095-8 URL pmid: 25812968 |
[17] |
Jeyashree K, Shanmugasundaram D, Rade K, et al. Impact and operational feasibility of TrueNatTM MTB/Rif under India's RNTCP . Public Health Action, 2020,10(3):87-91. doi: 10.5588/pha.20.0004.
doi: 10.5588/pha.20.0004 URL pmid: 33134121 |
[18] |
Nikam C, Jagannath M, Narayanan MM, et al. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: a near-care approach. PLoS One, 2013,8(1):e51121. doi: 10.1371/journal.pone.0051121.
doi: 10.1371/journal.pone.0051121 URL pmid: 23349670 |
[19] |
Nikam C, Kazi M, Nair C, et al. Evaluation of the Indian TrueNAT micro RT-PCR device with GeneXpert for case detection of pulmonary tuberculosis. Int J Mycobacteriol, 2014,3(3):205-210. doi: 10.1016/j.ijmyco.2014.04.003.
doi: 10.1016/j.ijmyco.2014.04.003 URL pmid: 26786489 |
[20] |
Ciesielczuk H, Kouvas N, North N, et al. Evaluation of the BD MAXTM MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur J Clin Microbiol Infect Dis, 2020,39(7):1321-1327. doi: 10.1007/s10096-020-03847-2.
doi: 10.1007/s10096-020-03847-2 URL pmid: 32078067 |
[21] |
Hofmann-Thiel S, Plesnik S, Mihalic M, et al. Clinical Evaluation of BD MAX MDR-TB Assay for Direct Detection of Mycobacterium tuberculosis Complex and Resistance Markers. J Mol Diagn, 2020,22(10):1280-1286. doi: 10.1016/j.jmoldx.2020.06.013.
doi: 10.1016/j.jmoldx.2020.06.013 URL pmid: 32688054 |
[22] | 徐东芳, 王超, 包训迪, 等. 线性探针技术在耐药结核病诊断中的应用. 安徽医药, 2020,24(12):2422-2425. doi: 10.3969/j.issn.1009-6469.2020.12.023. |
[23] |
Brandao AP, Pinhata JMW, Oliveira RS, et al. Speeding up the diagnosis of multidrug-resistant tuberculosis in a high-burden region with the use of a commercial line probe assay. J Bras Pneumol, 2019,45(2):e20180128. doi: 10.1590/1806-3713/e20180128.
doi: 10.1590/1806-3713/e20180128 URL pmid: 31017225 |
[24] |
Sharma K, Sharma M, Shree R, et al. Xpert MTB/RIF ultra for the diagnosis of tuberculous meningitis: A diagnostic accuracy study from India. Tuberculosis (Edinb), 2020,125:101990. doi: 10.1016/j.tube.2020.101990.
doi: 10.1016/j.tube.2020.101990 URL |
[25] | Horne DJ, Kohli M, Zifodya JS, et al. Xpert MTB/RIF and Xpert MTB/RIF Ultra for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev, 2019, 6(6):CD009593. doi: 10.1002/14651858.CD009593.pub4. |
[26] | 赵国连, 崔晓利, 康磊, 等. 荧光PCR探针熔解曲线技术检测涂阳患者痰标本中结核分枝杆菌耐药性的价值. 中国防痨杂志, 2019,41(2):149-155. doi: 10.3969/j.issn.1000-6621.2019.02.006. |
[27] |
Pang Y, Dong H, Tan Y, et al. Rapid diagnosis of MDR and XDR tuberculosis with the MeltPro TB assay in China. Sci Rep, 2016,6:25330. doi: 10.1038/srep25330.
doi: 10.1038/srep25330 URL pmid: 27149911 |
[28] |
Ford CB, Lin PL, Chase MR, et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet, 2011,43(5):482-486. doi: 10.1038/ng.811.
doi: 10.1038/ng.811 URL pmid: 21516081 |
[29] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[30] |
Gygli SM, Keller PM, Ballif M, et al. Whole-Genome Sequencing for Drug Resistance Profile Prediction in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019,63(4):e02175-18. doi: 10.1128/AAC.02175-18.
doi: 10.1128/AAC.02175-18 URL pmid: 30718257 |
[31] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8 URL pmid: 31345251 |
[32] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase Ⅱ/Ⅲ, multicenter, randomized, open-label clinical trial. Trials, 2019,20(1):57. doi: 10.1186/s13063-018-3053-1.
doi: 10.1186/s13063-018-3053-1 URL pmid: 30651149 |
[33] |
Sharma N, Singla N, Khanna A, et al. Pattern and trends of drug sensitivity in MDR-TB cases in Delhi (2009—2014): A record based study. Indian J Tuberc, 2019,66(2):222-226. doi: 10.1016/j.ijtb.2019.02.017.
doi: 10.1016/j.ijtb.2019.02.017 URL pmid: 31151488 |
[34] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[35] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160. doi: 10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL pmid: 27810467 |
[36] | World Health Organization. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. Geneva: World Health Organization, 2021. |
[1] | Chen Yu, Li Xiaorui, Wang Miaoran, Zhang Yuqi, Liu Chang, Wang Zhaohua, Shi Jie, Fan Lichao, Yin Zhihua, Xie Jianping. The research progress on the role of metal ions in tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 102-112. |
[2] | Xu Yannan, Fang Zihao, Zhao Wenli, Zheng Jiaxiong, Liu Suyang, Lin Jianxiong, Ji Liwei, Chang Qiaocheng. Characterisation of isoniazid-resistant Mycobacterium tuberculosis mutations in China [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 14-21. |
[3] | Gu Jinhua, Zhang Panpan. Evaluation of the application value of three detection methods for Mycobacterium tuberculosis in a comprehensive hospital [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 68-72. |
[4] | Wu Xiucen, Chen Guihua. Interpretation of the 2023 U.S. Preventive Clinical Services Guidelines Workgroup Statement of Recommendations for Screening Adults for Latent Tuberculosis Infection [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 398-403. |
[5] | Xiong Yan, Xiao Yue, Chen Chuang, Xia Yong, Li Yunkui, Lu Jia, Xia Lan. Analysis of tuberculosis screening results among college freshmen in Sichuan Province in 2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 422-429. |
[6] | Sun Bo, Feng Liping, Teng Chong, Zhu Hanfang, Zhao Bing, Feng Tao, Wang Qingkui, Zhou Hao, Gao Xinghai, Ou Xichao. Analysis of features of drug resistance of Mycobacterium tuberculosis and risk factors of multidrug-resistance in Hinggan League of Inner Mongolia Autonomous Region, 2021—2023 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 437-444. |
[7] | Zhang Jie, Ding Beichuan, Ren Yixuan, Tian Lili, Yi Junli, Pang Mengdi, Yang Xinyu. Exploring the causes of recurrence and genetic characteristics of tuberculosis strains in Beijing based on genotypic analysis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 128-134. |
[8] | Liang Chen, Tang Shenjie, Lin Minggui. Research progress of comprehensive treatment for tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 70-80. |
[9] | iu Liming, Li Ming. New progress in research on the influencing factors of the severity of Mycoplasma pneumoniae pneumonia in children [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 81-87. |
[10] | Xu Yujing, Li Yuru, Tang Lingling. Evaluation of the application effect of diversified missionary nursing on multidrug-resistant pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 449-453. |
[11] | Wang Danfeng, Du Guichun. Evaluation of focused nursing care on treatment compliance and prognosis of drug-resistant pulmonary tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 454-456. |
[12] | You Guoqing, Liu Wenguo, Feng Xin, Yu Min, Shi Lin, Hu Yan. Analysis of fluoroquinolones resistance in multidrug-resistant tuberculosis patients in Chongqing from 2020 to 2022 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 475-479. |
[13] | Yan Yaru, Xie Jianping. Research progress on the role of interleukin-1 in immune response and metabolic reprogramming of macrophages against Mycobacterium tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 511-518. |
[14] | Zhong Miner, Du Yuhua, Zhang Danni, Lin Ying, Wu Guifeng, Wang Ting, Liu Jianxiong. Analysis of latent tuberculosis infection among middle school and university freshmen in Guangzhou from 2018 to 2021 [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 115-119. |
[15] | Luo Yi, Tao Fengxi, Li Guofei, Zhang Huihui, Peng Peng, Ren Yi, Liu Suyang. Environmental monitoring and analysis of Mycobacterium tuberculosis and discussion on the effect of disinfection equipment in a tuberculosis hospital [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(2): 135-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||