Journal of Tuberculosis and Lung Disease ›› 2024, Vol. 5 ›› Issue (2): 172-178.doi: 10.19983/j.issn.2096-8493.20240040
• Review Articles • Previous Articles Next Articles
Yan Yanfeng1, Qi Wenxia2, Cui Yonghui1, Wei Caihong1()
Received:
2024-02-20
Online:
2024-04-20
Published:
2024-04-11
Contact:
Wei Caihong
E-mail:weicaihong_1974@163.com
Supported by:
CLC Number:
Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease[J]. Journal of Tuberculosis and Lung Disease , 2024, 5(2): 172-178. doi: 10.19983/j.issn.2096-8493.20240040
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20240040
[1] |
Christenson SA, Smith BM, Bafadhel M, et al. Chronic obstructive pulmonary disease. Lancet, 2022, 399(10342):2227-2242. doi:10.1016/S0140-6736(22)00470-6.
pmid: 35533707 |
[2] |
Murgia N, Gambelunghe A. Occupational COPD-The most under-recognized occupational lung disease?. Respirology, 2022, 27(6):399-410. doi:10.1111/resp.14272.
pmid: 35513770 |
[3] |
López-Campos JL, Tan W, Soriano JB. Global burden of COPD. Respirology, 2016, 21(1):14-23. doi:10.1111/resp.12660.
pmid: 26494423 |
[4] | Vogelmeier CF, Román-Rodríguez M, Singh D, et al. Goals of COPD treatment:Focus on symptoms and exacerbations. Respir Med, 2020, 166:105938. doi:10.1016/j.rmed.2020.105938. |
[5] | Zhu B, Wang Y, Ming J, et al. Disease burden of COPD in China: a systematic review. Int J Chron Obstruct Pulmon Dis, 2018, 13:1353-1364. doi:10.2147/COPD.S16155. |
[6] |
Ritchie AI, Wedzicha JA. Definition, Causes, Pathogenesis, and Consequences of Chronic Obstructive Pulmonary Disease Exacerbations. Clin Chest Med, 2020, 41(3):421-438. doi:10.1016/j.ccm.2020.06.007.
pmid: 32800196 |
[7] | Silverman EK. Genetics of COPD. Annu Rev Physiol, 2020, 10(82):413-431. doi:10.1146/annurev-physiol-021317-121224. |
[8] | 何小双. 慢性阻塞性肺疾病患者呼出气冷凝液中白介素8、白介素17水平及其与FEV1%的关系研究. 石河子:石河子大学, 2016. |
[9] |
Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 2007, 316(5830):1484-1488. doi:10.1126/science.1138341.
pmid: 17510325 |
[10] | Manevski M, Devadoss D, Long C, et al. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol, 2022, 13:803362. doi:10.3389/fimmu.2022.803362. |
[11] | Vierbuchen T, Agarwal S, Johnson JL, et al. The lncRNA LUCAT 1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A, 2023, 120(1):e2213715120. doi:10.1073/pnas.2213715120. |
[12] | Skvortsova K, Iovino N, Bogdanovic'O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol, 2018, 19(12):774-790. doi:10.1038/s41580-018-0074-2. |
[13] |
Zhang L, Valizadeh H, Alipourfard I, et al. Epigenetic Modifications and Therapy in Chronic Obstructive Pulmonary Disease (COPD): An Update Review. COPD, 2020, 17(3):333-342. doi:10.1080/15412555.2020.1780576.
pmid: 32558592 |
[14] | Schamberger AC, Mise N, Meiners S, et al. Epigenetic mechanisms in COPD: implications for pathogenesis and drug discovery. Expert Opin Drug Discov, 2014, 9(6):609-628. doi:10.1517/17460441.2014.913020. |
[15] | Deng L, Li W, Zhang J. LDAH2V: Exploring Meta-Paths Across Multiple Networks for lncRNA-Disease Association Prediction. IEEE/ACM Trans Comput Biol Bioinform, 2021, 18(4): 1572-1581. doi:10.1109/TCBB.2019.2946257. |
[16] | 顾斌, 张倩. 长链非编码RNA和慢性阻塞性肺疾病的关系研究进展. 国际呼吸杂志, 2019, 39(2):129-133. doi:10.3760/cma.j.issn.1673-436X.2019.02.010. |
[17] | Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol, 2021, 220(2):e202009045. doi:10.1083/jcb.202009045. |
[18] | Zhou AY, Zhao YY, Zhou ZJ, et al. Microarray Analysis of Long Non-Coding RNAs in Lung Tissues of Patients with COPD and HOXA-AS2 Promotes HPMEC Proliferation via Notch1. Chron Obstruct Pulmon Dis, 2020, 15:2449-2460. doi:10.2147/COPD.S259601. |
[19] |
Zhang H, Sun D, Li D, et al. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model. Sci Rep, 2018, 8(1):7609. doi:10.1038/s41598-018-25702-3.
pmid: 29765063 |
[20] | Guo C, Qi Y, Qu J, et al. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des, 2020, 26(6):688-700. doi:10.2174/1381612826666191227154009. |
[21] | Gu W, Yuan Y, Wang L, et al. Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD. CellMol Med, 2019, 23(11):7200-7209. doi:10.1111/jcmm.14389. |
[22] | Cazzola M, Hanania NA, Page CP, et al. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis, 2023, 18:1333-1352. doi:10.2147/COPD.S419056. |
[23] | Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis, 2018, 13:3341-3348. doi:10.2147/COPD.S176122. |
[24] | Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu RevPathol, 2009, 4:435-459. doi:10.1146/annurev.pathol.4.110807.092145. |
[25] |
van Dijk WD, Heijdra Y, Lenders JW, et al. Cigarette smoke retention and bronchodilation in patients with COPD. A controlled randomized trial. Respir Med, 2013, 107(1):112-119. doi:10.1016/j.rmed.2012.09.019.
pmid: 23069326 |
[26] | Wu M, Lai T, Jing D, et al. Epithelium-derived IL17A Promotes Cigarette Smoke-induced Inflammation and Mucus Hyperproduction. Am J Respir Cell Mol Biol, 2021, 65(6):581-592. doi:10.1165/rcmb.2020-0424OC. |
[27] | Devadoss D, Long C, Langley RJ, et al. Long Noncoding Transcriptome in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol, 2019, 61(6):678-688. doi:10.1165/rcmb.2019-0184TR. |
[28] |
Shashkin P, Simpson D, Mishin V, et al. Expression of CXCL 16 in Human T Cells. Arterioscler Thromb Vasc Biol, 2003, 23(1):148-149. doi:10.1161/01.atv.0000043906.61088.4b.
pmid: 12524239 |
[29] | Qu X, Dang X, Wang W, et al. Long Noncoding RNAs and mRNA Regulation in Peripheral Blood Mononuclear Cells of Patients with Chronic Obstructive Pulmonary Disease. Mediators Inflamm, 2018, 2018:7501851. doi:10.1155/2018/7501851. |
[30] | Huang Q, Huang C, Luo Y, et al. Circulating lncRNA NEAT 1 correlates with increased risk, elevated severity and unfavorable prognosis in sepsis patients. Am J Emerg Med, 2018, 36(9):1659-1663. doi:10.1016/j.ajem.2018.06.008. |
[31] | Yang K, Zeng L, Ge A, et al. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol, 2022, 13:930171. doi:10.3389/fimmu.2022.930171. |
[32] | Zhang F, Wu L, Qian J, et al. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Autoimmun, 2016, 75:96-104. doi:10.1016/j.jaut.2016.07.012. |
[33] | Ming X, Duan W, Yi W. Long non-coding RNA NEAT1 predicts elevated chronic obstructive pulmonary disease (COPD) susceptibility and acute exacerbation risk, and correlates with higher disease severity, inflammation, and lower miR-193a in COPD patients. Int J Clin Exp Pathol, 2019, 12(8):2837-2848. |
[34] |
Radicioni G, Ceppe A, Ford AA, et al. Airway Mucin MUC5AC and MUC5B Concentrations and the Initiation and Progression of Chronic Obstructive Pulmonary Disease: An Analysis of the SPIROMICS Cohort. Lancet Respir Med, 2021, 9(11):1241-1254. doi:10.1016/S2213-2600(21)00079-5.
pmid: 34058148 |
[35] | Baginski TK, Dabbagh K, Satjawatcharaphong C, et al. Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli. Am J Respir Cell MolBiol, 2006, 35(2):165-174. doi:10.1165/rcmb.2005-0259OC. |
[36] | Devadoss D, Daly G, Manevski M, et al. A long noncoding RNA antisense to ICAM-1 is involved in allergic asthma associated hyperreactive response of airway epithelial cells. Mucosal Immunol, 2021, 14(3):630-639. doi:10.1038/s41385-020-00352-9. |
[37] | Manevski M, Devadoss D, Long C, et al. Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia. Front Immunol, 2022, 13:803362. doi:10.3389/fimmu.2022.803362. |
[38] | Shen Q, Zheng J, Wang X, et al. LncRNA SNHG5 regulates cell apoptosis and inflammation by miR-132/PTEN axis in COPD. Biomed Pharmacothe, 2020, 126:110016. doi:1016.2020/j.biopha.110016.2020. |
[39] | Feng H, Zhang D, Yin Y, et al. Salidroside ameliorated the pulmonary inflammation induced by cigarette smoke via mitigating M1 macrophage polarization by JNK/c-Jun. Phytother Res, 2023, 37(9):4251-4264. doi:10.1002/ptr.7905. |
[40] | Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobio-logy, 2018, 223(4/5):383-396. doi:10.1016/j.imbio.2017.11.001. |
[41] |
Eapen MS, Hansbro PM, McAlinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep, 2017, 7(1):13392. doi:10.1038/s41598-017-13888-x.
pmid: 29042607 |
[42] | Liu R, Sun X, Hu Z, et al. Knockdown of long non-coding RNA MIR155HG suppresses melanoma cell proliferation, and deregulated MIR155HG in melanoma is associated with M1/M2 balance and macrophage infiltration. Cells Dev, 2022, 170:203768. doi:10.1016/j.cdev.2022.203768. |
[43] | Li N, Liu Y, Cai J. LncRNA MIR155HG regulates M1/M2 macrophage polarization inchronic obstructive pulmonary disease. Biomed Pharmacother, 2019, 117:109015. doi:10.1016/j.biopha.2019.109015. |
[44] | Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol, 2020, 36:101679. doi:10.1016/j.redox.2020.101679. |
[45] |
Nucera F, Mumby S, Paudel KR, et al. Role of oxidative stress in the pathogenesis of COPD. Minerva Med, 2022, 113(3):370-404. doi:10.23736/S0026-4806.22.07972-1.
pmid: 35142479 |
[46] | Harmon AC, Noël A, Subramanian B, et al. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol, 2021, 321(4):H667-H683. doi:10.1152/ajpheart.00725.2020. |
[47] |
Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest, 2013, 144(1):266-273. doi:10.1378/chest.12-2664.
pmid: 23880677 |
[48] | Fuschi P, Carrara M, Voellenkle C, et al. Central role of the p 53 pathway in the noncoding-RNA response to oxidative stress. Aging, 2017, 9(12):2559-2586. doi:10.18632/aging. |
[49] | Kim C, Kang D, Lee E, et al. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Sene-scence, and Age-Related Diseases. Oxid Med Cell Longev, 2017, 2017:2062384. doi:10.1155/2017/2062384. |
[50] |
Ravasi T, Suzuki H, Pang KC, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res, 2006, 16(1):11-19. doi:10.1101/gr.4200206.
pmid: 16344565 |
[51] | Song H, Jiang L, Yang W, et al. Cryptotanshinone alleviates lipopolysaccharide and cigarette smoke-induced chronic obstructive pulmonary disease in mice via the Keap1/Nrf2 axis. Biomed Pharmacother, 2023, 165:115105. doi:10.1016/j.biopha.2023.115105. |
[52] |
Yamada K, Asai K, Nagayasu F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med, 2016, 16:27. doi:10.1186/s12890-016-0189-1.
pmid: 26861788 |
[53] | Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol, 2013, 49(2):204-211. doi:10.1165/rcmb.2013-0159RC. |
[54] | Liu TW, Liu F, Kang J. Let-7b-5p is involved in the response of endoplasmic reticulum stress in acute pulmonary embolism through upregulating the expression of stress-associated endoplasmic reticulum protein 1. IUBMB Life, 2020, 72(8):1725-1736. doi:10.1002/iub.2306. |
[55] | Wang Y, Chen J, Chen W, et al. LINC00987 Ameliorates COPD by Regulating LPS-Induced Cell Apoptosis, Oxidative Stress, Inflammation and Autophagy Through Let-7b-5p/SIRT1 Axis. Int J Chron Obstruct Pulmon Dis, 2020, 15:3213-3225. doi:10.2147/COPD.S276429. |
[56] | Zhu K, Li Y, Deng C, et al. Significant association of PKM2 and NQO1 proteins with poor prognosis in breast cancer. Pathol Res Pract, 2020, 216(11):153173. doi:10.1016/j.prp.2020.153173. |
[57] | Shahdoust M, Hajizadeh E, Mozdarani H, et al. Finding genes discriminating smokers from non-smokers by applying a growing self-organizing clustering method to large airway epithelium cell microarray data. Asian Pac J Cancer Prev, 2013, 14(1):111-116. doi:10.7314/apjcp.2013.14.1.111. |
[58] | Zhang H, Guan R, Zhang Z, et al. LncRNA Nqo1-AS 1 Attenuates Cigarette Smoke-Induced Oxidative Stress by Upregulating its Natural Antisense Transcript Nqo1. Front Pharmacol, 2021, 12:729062. doi:10.3389/fphar.2021.729062. |
[59] | Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J, 2021, 40(5):e106700. doi:10.15252/embj.2020106700. |
[60] |
Ferrè F, Colantoni A, Helmer-Citterich M. Revealing protein-lncRNA interaction. Brief Bioinform, 2016, 17(1): 106-116. doi:10.1093/bib/bbv031.
pmid: 26041786 |
[61] |
Sauler M, Bazan IS, Lee PJ. Cell Death in the Lung: The Apoptosis-Necroptosis Axis. Annu Rev Physiol, 2019, 81:375-402. doi:10.1146/annurev-physiol-020518-114320.
pmid: 30485762 |
[62] |
Bodas M, Min T, Vij N. Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis, 2015, 20(5):725-739. doi:10.1007/s10495-015-1098-0.
pmid: 25638276 |
[63] | Long YJ, Liu XP, Chen SS, et al. miR-34a is involved in CSE-induced apoptosis of human pulmonary microvascular endothelial cells by targeting Notch-1 receptor protein. Respir Res, 2018, 19(1):21. doi:10.1186/s12931-018-0722-2. |
[64] |
Thomsen M, Ingebrigtsen TS, Marott JL, et al. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA, 2013, 309(22):2353-2361. doi:10.1001/jama.2013.5732.
pmid: 23757083 |
[65] | Sun Y, An N, Li J, et al. miRNA-206 regulates human pulmonary microvascular endothelial cell apoptosis via targeting in chronic obstructive pulmonary disease. Cell Biochem, 2019, 120(4):6223-6236. doi:10.1002/jcb.27910. |
[66] | Petit A, Knabe L, Khelloufi K, et al. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI 3 Signaling. Am J Respir Cell Mol Biol, 2019, 61(4):501-511. doi:10.1165/rcmb.2018-0228OC. |
[67] |
Pace E, Di Vincenzo S, Di Salvo E, et al. MiR-21 upregulation increases IL-8 expression and tumorigenesis program in airway epithelial cells exposed to cigarette smoke. J Cell Physiol, 2019, 234(12):22183-22194. doi:10.1002/jcp.28786.
pmid: 31054160 |
[68] | Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): A tumor suppressor long non coding RNA. Biomed Pharmacother, 2019, 118:109129. doi:10.1016/j.biopha.2019.109129. |
[69] | Bi H, Wang G, Li Z, et al. Long Noncoding RNA (lncRNA) Maternally Expressed Gene 3 (MEG3) Participates in Chronic Obstructive Pulmonary Disease through Regulating Human Pulmonary Microvascular Endothelial Cell Apoptosis. Med Sci Monit, 2020, 26:e920793. doi:10.12659/MSM.920793. |
[70] | Song B, Ye L, Wu S, et al. Long non-coding RNA MEG 3 regulates CSE-induced apoptosis and inflammation via regulating miR-218 in 16HBE cells. Biochem Biophys Res Commun, 2020, 521(2):368-374. doi:10.1016/j.bbrc.2019.10.135. |
[71] | Maarouf M, Chen B, Chen Y, et al. Identification of lncRNA-155 encoded by MIR155HG as a novel regulator of innate immunity against influenza A virus infection. Cell Microbiol, 2019, 21(8):e13036. doi:10.1111/cmi.13036. |
[72] | Song J, Wang Q, Zong L. LncRNA MIR155HG contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-128-5p/BRD4 axis. Biosci Rep, 2020, 40(3):BSR20192567. doi:10.1042/BSR20192567. |
[73] | Fu T, Tian H, Rong H, et al. LncRNA PVT1 induces apoptosis and inflammatory response of bronchial epithelial cells by regulating miR-30b-5p/BCL2L11 axis in COPD. Genes Environ, 2023, 45(1):24. doi:10.1186/s41021-023-00283-4. |
[1] | Guo Meng, Zhu Yuhui, Fan Yongde, Li Jingwen. Preliminary study on the predicting of the popularity of papers in the core journals of respiratory disease and tuberculosis in China based on neural network [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 79-86. |
[2] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[3] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[4] | Meng Ting, Chen Jingfang, Deng Guofang, Lin Yi, Ruan Shujin, Liu Linlin, Li Mengjun. Research progress on mental vulnerability and anxiety-depression status in tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 583-589. |
[5] | Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 484-488. |
[6] | He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. |
[7] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[8] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
[9] | Peng Maocuo, Xie Jungang. Research progress on immune cells in chronic obstructive pulmonary disease complicated with cardiovascular disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 179-185. |
[10] | Cao Hong, Qian Bing, Wu Jinju. Current situation of tuberculosis epidemic in schools and research progress in prevention and control [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 88-92. |
[11] | Dai Zhongshang, Zhong Yanjun, Chen Yan. Research progress on chronic obstructive pulmonary disease with bronchiectasis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 499-505. |
[12] | Guo Jing, Lou Nannan, Li Jialin, Zhang Hua, Ma Xiang. Research progress of chest tightness variant asthma and comparison with typical asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 413-418. |
[13] | Ruan Shujin, Zeng Jian, Chen Jingfang, Wang Xiufen, Liu Linlin, Jiang Youli, Li Mengjun. Research progress on tuberculosis patients treatment adherence: current status, influencing factors, and intervention measures [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 419-424. |
[14] | Feng Yi, Chang Qing, Li Feng. Research progress of combined pulmonary fibrosis and emphysema [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 425-431. |
[15] | Yuan Lirong, Li Shuhua, Cui Xiaohong, Pei Junli, Gong Qiaoqiao. Research progress of nurses emergency training for nursing emergencies in public health [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 235-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||