Journal of Tuberculosis and Lung Disease ›› 2022, Vol. 3 ›› Issue (1): 60-64.doi: 10.19983/j.issn.2096-8493.20210157
• Review Articles • Previous Articles Next Articles
Received:
2021-12-26
Online:
2022-02-20
Published:
2022-02-24
Contact:
CHEN Yan
E-mail:chenyan99727@csu.edu.cn
Supported by:
CLC Number:
LUO Li-juan, CHEN Yan. Research progress of animal models of emphysema[J]. Journal of Tuberculosis and Lung Disease , 2022, 3(1): 60-64. doi: 10.19983/j.issn.2096-8493.20210157
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20210157
[1] |
王晓娟, 方向阳. 慢性阻塞性肺疾病全球倡议2019:慢性阻塞性肺疾病诊断、治疗与预防全球策略解读. 中国全科医学, 2019, 22(18):2141-2149. doi: 10.12114/j.issn.1007-9572.2019.00.064.
doi: 10.12114/j.issn.1007-9572.2019.00.064 |
[2] |
李思其, 高兴林. 《慢性阻塞性肺疾病全球倡议》2021年版更新解读. 临床药物治疗杂志, 2021, 19(5):36-42. doi: 10.3969/j.issn.1672-3384.2021.05.008.
doi: 10.3969/j.issn.1672-3384.2021.05.008 |
[3] |
丁明静, 徐桂华, 高笑宇, 等. 慢性阻塞性肺疾病发病机制研究进展. 世界最新医学信息文摘(连续型电子期刊), 2019, 19(22):118-123. doi: 10.19613/j.cnki.1671-3141.2019.22.077.
doi: 10.19613/j.cnki.1671-3141.2019.22.077 |
[4] |
He X, Li T, Kang N, et al. The protective effect of PRMT6 overexpression on cigarette smoke extract-induced murine emphysema model. Int J Chron Obstruct Pulmon Dis, 2017, 12:3245-3254. doi: 10.2147/COPD.S144881.
doi: 10.2147/COPD.S144881 URL |
[5] |
Mansouri Z, Dianat M, Radan M, et al. Ellagic Acid Ameliorates Lung Inflammation and Heart Oxidative Stress in Elastase-Induced Emphysema Model in Rat. Inflammation, 2020, 43(3):1143-1156. doi: 10.1007/s10753-020-01201-4.
doi: 10.1007/s10753-020-01201-4 pmid: 32103438 |
[6] |
冯志军, 路武杰, 滕伟, 等. 纤维支气管镜肺减容术治疗绵羊肺气肿模型的实验研究. 重庆医科大学学报, 2014, 39(9):1236-1239. doi: 10.13406/j.cnki.cyxb.000014.
doi: 10.13406/j.cnki.cyxb.000014 |
[7] |
刘迪, 张洪春. 慢性阻塞性肺疾病动物模型的造模方法. 中国比较医学杂志, 2020, 30(3):108-114. doi: 10.3969/j.issn.1671-7856.2020.03.019.
doi: 10.3969/j.issn.1671-7856.2020.03.019 |
[8] |
Goldklang MP, Tekabe Y, Zelonina T, et al. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo. Am J Respir Cell Mol Biol, 2016, 55(6):848-857. doi: 10.1165/rcmb.2015-0407OC.
doi: 10.1165/rcmb.2015-0407OC URL |
[9] |
Paul T, Blanco I, Aguilar D, et al. Therapeutic effects of soluble guanylate cyclase stimulation on pulmonary hemodynamics and emphysema development in guinea pigs chronically exposed to cigarette smoke. Am J Physiol Lung Cell Mol Physiol, 2019, 317(2):L222-L234. doi: 10.1152/ajplung.00399.2018.
doi: 10.1152/ajplung.00399.2018 URL |
[10] |
Cui W, Zhang Z, Zhang P, et al. Nrf2 attenuates inflammatory response in COPD/emphysema: Crosstalk with Wnt3a/β-catenin and AMPK pathways. J Cell Mol Med, 2018, 22(7):3514-3525. doi: 10.1111/jcmm.13628.
doi: 10.1111/jcmm.13628 URL |
[11] |
Zeng H, Li T, He X, et al. Oxidative stress mediates the apoptosis and epigenetic modification of the Bcl-2 promoter via DNMT1 in a cigarette smoke-induced emphysema model. Respir Res, 2020, 21(1):229. doi: 10.1186/s12931-020-01495-w.
doi: 10.1186/s12931-020-01495-w URL |
[12] |
Cui L, Li H, Xie M, et al. Relationship Between Proteinase with a Disintegrin and a Metalloproteinase Domain-9 (ADAM9), Inflammation, Airway Remodeling, and Emphysema in COPD Patients. Int J Chron Obstruct Pulmon Dis, 2020, 15:3335-3346.
doi: 10.2147/COPD.S276171 URL |
[13] |
Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis, 2018, 13:3341-3348. doi: 10.2147/COPD.S176122.
doi: 10.2147/COPD.S176122 URL |
[14] |
Pennisi E. Genomics. Sequence tells mouse, human genome secrets. Science, 2002, 298(5600):1863-1865. doi: 10.1126/science.298.5600.1863.
doi: 10.1126/science.298.5600.1863 URL |
[15] |
Kratzer A, Salys J, Nold-Petry C, et al. Role of IL-18 in second-hand smoke-induced emphysema. Am J Respir Cell Mol Biol, 2013, 48(6):725-732. doi: 10.1165/rcmb.2012-0173OC.
doi: 10.1165/rcmb.2012-0173OC URL |
[16] |
Wright JL, Churg A. Animal models of cigarette smoke-induced COPD. Chest, 2002, 122(6 Suppl):301S-306S. doi: 10.1378/chest.122.6_suppl.301s.
doi: 10.1378/chest.122.6_suppl.301s URL |
[17] |
Stevenson CS, Docx C, Webster R, et al. Comprehensive gene expression profiling of rat lung reveals distinct acute and chronic responses to cigarette smoke inhalation. Am J Physiol Lung Cell Mol Physiol, 2007, 293(5):L1183-1193. doi: 10.1152/ajplung.00105.2007.
doi: 10.1152/ajplung.00105.2007 URL |
[18] |
Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, 2008, 295(1):L1-15. doi: 10.1152/ajplung.90200.2008.
doi: 10.1152/ajplung.90200.2008 URL |
[19] |
Golovatch P, Mercer BA, Lemaître V, et al. Role for cathepsin K in emphysema in smoke-exposed guinea pigs. Exp Lung Res, 2009, 35(8):631-645. doi: 10.3109/01902140902822304.
doi: 10.3109/01902140902822304 pmid: 19895319 |
[20] |
Domínguez-Fandos D, Peinado VI, Puig-Pey R, et al. Pulmonary inflammatory reaction and structural changes induced by cigarette smoke exposure in the Guinea pig. COPD, 2012, 9(5):473-484. doi: 10.3109/15412555.2012.691999.
doi: 10.3109/15412555.2012.691999 pmid: 22708688 |
[21] |
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med, 2017, 195(5):557-582. doi: 10.1164/rccm.201701-0218PP.
doi: 10.1164/rccm.201701-0218PP URL |
[22] |
John G, Kohse K, Orasche J, et al. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond), 2014, 126(3):207-221. doi: 10.1042/CS20130117.
doi: 10.1042/CS20130117 URL |
[23] |
Lee J, Machin M, Russell KE, et al. Corticosteroid modulation of immunoglobulin expression and B-cell function in COPD. FASEB J, 2016, 30(5):2014-2026. doi: 10.1096/fj.201500135.
doi: 10.1096/fj.201500135 URL |
[24] |
Le Y, Cao W, Zhou L, et al. Infection of Mycobacterium tuberculosis Promotes Both M1/M2 Polarization and MMP Production in Cigarette Smoke-Exposed Macrophages. Front Immunol, 2020, 11:1902. doi: 10.3389/fimmu.2020.01902.
doi: 10.3389/fimmu.2020.01902 URL |
[25] |
He ZH, Chen P, Chen Y, et al. Comparison between cigarette smoke-induced emphysema and cigarette smoke extract-induced emphysema. Tob Induc Dis, 2015, 13(1):6. doi: 10.1186/s12971-015-0033-z.
doi: 10.1186/s12971-015-0033-z URL |
[26] |
Taraseviciene-Stewart L, Douglas IS, Nana-Sinkam PS, et al. Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc, 2006, 3(8):687-690. doi: 10.1513/pats.200605-105SF.
doi: 10.1513/pats.200605-105SF URL |
[27] |
Chen L, Luo L, Kang N, et al. The Protective Effect of HBO1 on Cigarette Smoke Extract-Induced Apoptosis in Airway Epithelial Cells. Int J Chron Obstruct Pulmon Dis, 2020, 15:15-24. doi: 10.2147/COPD.S234634.
doi: 10.2147/COPD.S234634 URL |
[28] |
Zhang Y, Cao J, Chen Y, et al. Intraperitoneal injection of cigarette smoke extract induced emphysema, and injury of cardiac and skeletal muscles in BALB/C mice. Exp Lung Res, 2013, 39(1):18-31. doi: 10.3109/01902148.2012.745910.
doi: 10.3109/01902148.2012.745910 pmid: 23216006 |
[29] |
Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol, 2009, 296(4):L648-656. doi: 10.1152/ajplung.90270.2008.
doi: 10.1152/ajplung.90270.2008 URL |
[30] |
He ZH, Chen Y, Chen P, et al. Decitabine enhances stem cell antigen-1 expression in cigarette smoke extract-induced emphysema in animal model. Exp Biol Med (Maywood), 2016, 241(2):131-139. doi: 10.1177/1535370215598402.
doi: 10.1177/1535370215598402 URL |
[31] |
Ge Z, Yang Y, Zhou X, et al. Overexpression of the hyperplasia suppressor gene inactivates airway fibroblasts obtained from a rat model of chronic obstructive pulmonary disease by inhibiting the Wnt signaling pathway. Mol Med Rep, 2019, 20(3):2754-2762. doi: 10.3892/mmr.2019.10504.
doi: 10.3892/mmr.2019.10504 |
[32] |
Rodrigues R, Olivo CR, Lourenço JD, et al. A murine model of elastase- and cigarette smoke-induced emphysema. J Bras Pneumol, 2017, 43(2):95-100. doi: 10.1590/S1806-37562016000000179.
doi: S1806-37132017000200095 pmid: 28538775 |
[33] |
Kohler JB, Cervilha DAB, Riani Moreira A, et al. Microenvironmental stimuli induce different macrophage polarizations in experimental models of emphysema. Biol Open, 2019, 8(4):bio040808. doi: 10.1242/bio.040808.
doi: 10.1242/bio.040808 |
[34] |
Melo AC, Cattani-Cavalieri I, Barroso MV, et al. Atorvastatin dose-dependently promotes mouse lung repair after emphysema induced by elastase. Biomed Pharmacother, 2018, 102:160-168. doi: 10.1016/j.biopha.2018.03.067.
doi: 10.1016/j.biopha.2018.03.067 URL |
[35] |
Zhang Z, Wang J, Liu F, et al. Non-inflammatory emphysema induced by NO(2) chronic exposure and intervention with demethylation 5-Azacytidine. Life Sci, 2019, 221:121-129. doi: 10.1016/j.lfs.2019.02.022.
doi: S0024-3205(19)30112-2 pmid: 30763575 |
[36] |
Cheng Q, Fang L, Feng D, et al. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother, 2019, 109:2005-2013. doi: 10.1016/j.biopha.2018.11.002.
doi: 10.1016/j.biopha.2018.11.002 URL |
[37] |
Surolia R, Karki S, Kim H, et al. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3):L280-292. doi: 10.1152/ajplung.00097.2015.
doi: 10.1152/ajplung.00097.2015 URL |
[38] |
Jin S, Zhao G, Li Z, et al. Age-related pulmonary emphysema in mice lacking alpha/beta hydrolase domain containing 2 gene. Biochem Biophys Res Commun, 2009, 380(2):419-424. doi: 10.1016/j.bbrc.2009.01.098.
doi: 10.1016/j.bbrc.2009.01.098 URL |
[39] |
Su B, Liu T, Fan H, et al. Inflammatory Markers and the Risk of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PLoS One, 2016, 11(4):e0150586. doi: 10.1371/journal.pone.0150586.
doi: 10.1371/journal.pone.0150586 URL |
[40] |
Schober A, Feiner JR, Bickler PE, et al. Effects of Changes in Arterial Carbon Dioxide and Oxygen Partial Pressures on Cerebral Oximeter Performance. Anesthesiology, 2018, 128(1):97-108. doi: 10.1097/ALN.0000000000001898.
doi: 10.1097/ALN.0000000000001898 pmid: 29084012 |
[41] |
He ZH, Chen Y, Chen P, et al. 5-Aza-2'-deoxycytidine protects against emphysema in mice via suppressing p16(Ink4a) expression in lung tissue. Int J Chron Obstruct Pulmon Dis, 2017, 12:3149-3158. doi: 10.2147/COPD.S131090.
doi: 10.2147/COPD.S131090 URL |
[42] |
Oki H, Yazawa T, Baba Y, et al. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema. Microbiol Immunol, 2017, 61(7):264-271. doi: 10.1111/1348-0421.12492.
doi: 10.1111/1348-0421.12492 URL |
[43] |
Kubo H, Asai K, Kojima K, et al. Exercise Ameliorates Emphysema Of Cigarette Smoke-Induced COPD In Mice Through The Exercise-Irisin-Nrf2 Axis. Int J Chron Obstruct Pulmon Dis, 2019, 14:2507-2516. doi: 10.2147/COPD.S226623.
doi: 10.2147/COPD.S226623 URL |
[44] |
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteina-ses in emphysema. Matrix Biol, 2018, 73:34-51. doi: 10.1016/j.matbio.2018.01.018.
doi: S0945-053X(17)30340-2 pmid: 29406250 |
[45] |
Kim YH, Kang MK, Lee EJ, et al. Dried Yeast Extracts Curtails Pulmonary Oxidative Stress, Inflammation and Tissue Destruction in a Model of Experimental Emphysema. Antioxidants, 2019, 8(9):349. doi: 10.3390/antiox8090349.
doi: 10.3390/antiox8090349 URL |
[46] |
Wang XL, Li T, Li JH, et al. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease. Molecules, 2017, 22(9):1529. doi: 10.3390/molecules22091529.
doi: 10.3390/molecules22091529 URL |
[47] |
Cao Y, Zhou X, Yin Z, et al. The anti-inflammatory effect of BML-111 on COPD may be mediated by regulating NLRP3 inflammasome activation and ROS production. Prostaglandins Other Lipid Mediat, 2018, 138:23-30. doi: 10.1016/j.prostaglandins.2018.08.001.
doi: 10.1016/j.prostaglandins.2018.08.001 |
[48] |
Yamada K, Asai K, Nagayasu F, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med, 2016, 16:27. doi: 10.1186/s12890-016-0189-1.
doi: 10.1186/s12890-016-0189-1 URL |
[49] | Zhao YL, Li F, Liu YW, et al. Adiponectin attenuates endoplasmic reticulum stress and alveolar epithelial apoptosis in COPD rats. Eur Rev Med Pharmacol Sci, 2017, 21(21):4999-5007. |
[50] |
Shah PL, Herth FJ, van Geffen WH, et al. Lung volume reduction for emphysema. Lancet Respir Med, 2017, 5(2):147-156. doi: 10.1016/S2213-2600(16)30221-1.
doi: 10.1016/S2213-2600(16)30221-1 URL |
[51] |
Ochs M. Estimating structural alterations in animal models of lung emphysema. Is there a gold standard? Ann Anat, 2014, 196(1):26-33. doi: 10.1016/j.aanat.2013.10.004.
doi: 10.1016/j.aanat.2013.10.004 URL |
[1] | Yang Shuqi, Li Feng. Advances in PD1/PD-L1 inhibitors in tuberculosis research [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(1): 94-101. |
[2] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[3] | Meng Ting, Chen Jingfang, Deng Guofang, Lin Yi, Ruan Shujin, Liu Linlin, Li Mengjun. Research progress on mental vulnerability and anxiety-depression status in tuberculosis patients [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 583-589. |
[4] | Zhao Fei, Zhan Lu. Research progress on the regulation of TLR4 signaling pathway by miR-451a in the pathogenesis of tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(5): 484-488. |
[5] | He Fanyi, Lu Nihong, Du Yingrong. Research progress on the interaction between tuberculosis and COVID-19 [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 345-351. |
[6] | Zhao Jun, Yang Hongyu, Kang Xiong. Research progress on influencing factors and intervention strategies of stigma in patients with pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(4): 364-369. |
[7] | Qu Chunjin, Peng Jiayi, Liu Xinyi, Xiao Guanchen, Gu Fen, Li Nannan. Research progress on continuous nursing of patients with chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(3): 254-259. |
[8] | Yan Yanfeng, Qi Wenxia, Cui Yonghui, Wei Caihong. Progress in the expression of long-stranded noncoding RNA and their role in chronic obstructive pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 172-178. |
[9] | Peng Maocuo, Xie Jungang. Research progress on immune cells in chronic obstructive pulmonary disease complicated with cardiovascular disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(2): 179-185. |
[10] | Cao Hong, Qian Bing, Wu Jinju. Current situation of tuberculosis epidemic in schools and research progress in prevention and control [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(1): 88-92. |
[11] | Dai Zhongshang, Zhong Yanjun, Chen Yan. Research progress on chronic obstructive pulmonary disease with bronchiectasis [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 499-505. |
[12] | Guo Jing, Lou Nannan, Li Jialin, Zhang Hua, Ma Xiang. Research progress of chest tightness variant asthma and comparison with typical asthma [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 413-418. |
[13] | Ruan Shujin, Zeng Jian, Chen Jingfang, Wang Xiufen, Liu Linlin, Jiang Youli, Li Mengjun. Research progress on tuberculosis patients treatment adherence: current status, influencing factors, and intervention measures [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 419-424. |
[14] | Feng Yi, Chang Qing, Li Feng. Research progress of combined pulmonary fibrosis and emphysema [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 425-431. |
[15] | Yuan Lirong, Li Shuhua, Cui Xiaohong, Pei Junli, Gong Qiaoqiao. Research progress of nurses emergency training for nursing emergencies in public health [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(3): 235-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||