Journal of Tuberculosis and Lung Disease ›› 2025, Vol. 6 ›› Issue (4): 472-476.doi: 10.19983/j.issn.2096-8493.20250019
• Review Articles • Previous Articles
Zhu Mengyang1,2, Xiao Li2(), Zhang Tao1(
)
Received:
2025-01-17
Online:
2025-08-20
Published:
2025-08-08
Contact:
Xiao Li, Email: Supported by:
CLC Number:
Zhu Mengyang, Xiao Li, Zhang Tao. Research progress on the role of interleukin-24 in lung-related diseases[J]. Journal of Tuberculosis and Lung Disease , 2025, 6(4): 472-476. doi: 10.19983/j.issn.2096-8493.20250019
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jtbld.cn/EN/10.19983/j.issn.2096-8493.20250019
[1] | Feng K, Cen J, Zou X, et al. Novel insight into MDA-7/IL-24: A potent therapeutic target for autoimmune and inflammatory diseases. Clin Immunol, 2024, 266: 110322. doi:10.1016/j.clim.2024.110322. |
[2] | Zhang K, Qu J, Deng S, et al. Serum IL-24 combined with CA 125 as screening and prognostic biomarkers for NSCLC. Cell Biol Int, 2024, 48(8): 1160-1168. doi:10.1002/cbin.12173. |
[3] |
Mitamura Y, Nunomura S, Furue M, et al. IL-24: A new player in the pathogenesis of pro-inflammatory and allergic skin diseases. Allergol Int, 2020, 69(3): 405-411. doi:10.1016/j.alit.2019.12.003.
pmid: 31980374 |
[4] | Modi J, Roy A, Pradhan AK, et al. Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci, 2021, 23(1): 72. doi:10.3390/ijms23010072. |
[5] |
Emdad L, Bhoopathi P, Talukdar S, et al. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol, 2020, 66: 140-154. doi:10.1016/j.semcancer.2019.07.013.
pmid: 31356866 |
[6] | Shibata N, Ohashi Y, Tsukada A, et al. IL24 Expression in Synovial Myofibroblasts: Implications for Female Osteoarthritis Pain through Propensity Score Matching Analysis. Medicina (Kaunas), 2024, 60(5):741. doi:10.3390/medicina60050741. |
[7] | Vesely MD, Christensen SR. Type 2 immunity to the rescue: enhancing antitumor immunity for skin cancer prevention. J Clin Invest, 2025, 135(1):e188018. doi:10.1172/JCI188018. |
[8] | Cai Y, He C, Dai Y, et al. Spinal interleukin-24 contributes to neuropathic pain after peripheral nerve injury through interleukin-20 receptor 2 in mice. Exp Neurol, 2024, 372: 114643. doi:10.1016/j.expneurol.2023.114643. |
[9] | An Q, Gu X, Jiang Y. The Role of Interleukin-24 and Downstream Pathways in Inflammatory and Autoimmune Diseases. Cell Biochem Biophys, 2024. doi:10.1007/s12013-024-01576-3. |
[10] | Zhang K, Hu W, Li F, et al. IL-24 improves efficacy of CAR-T cell therapy by targeting stemness of tumor cells. Br J Cancer, 2024, 130(8):1337-1347. doi:10.1038/s41416-024-02601-1. |
[11] |
Miri SM, Pourhossein B, Hosseini SY, et al. Enhanced synergistic antitumor effect of a DNA vaccine with anticancer cytokine, MDA-7/IL-24, and immune checkpoint blockade. Virol J, 2022, 19(1): 106. doi:10.1186/s12985-022-01842-x.
pmid: 35752792 |
[12] | Sie C, Kant R, Peter C, et al. IL-24 intrinsically regulates Th 17 cell pathogenicity in mice. J Exp Med, 2022, 219(8):e20212443. doi:10.1084/jem.20212443. |
[13] |
Chong WP, Mattapallil MJ, Raychaudhuri K, et al. The Cytokine IL-17A Limits Th17 Pathogenicity via a Negative Feedback Loop Driven by Autocrine Induction of IL-24. Immunity, 2020, 53(2): 384-97.e5. doi:10.1016/j.immuni.2020.06.022.
pmid: 32673565 |
[14] | Zhang X, Hu C, Zhong Y, et al. Multifunctional Interleukin-24 Resolves Neuroretina Autoimmunity via Diverse Mechanisms. Int J Mol Sci, 2022, 23(19): 11988. doi:10.3390/ijms231911988. |
[15] | Chen J, Zhang Y, Zhang H, et al. IL-24 is the key effector of Th 9 cell-mediated tumor immunotherapy. iScience, 2023, 26(9): 107531. doi:10.1016/j.isci.2023.107531. |
[16] | Smith S, Lopez S, Kim A, et al. Interleukin 24: Signal Transduction Pathways. Cancers (Basel), 2023, 15(13):3365. doi:10.3390/cancers15133365. |
[17] | Zhong Y, Zhang X, Chong W. Interleukin-24 Immunobiology and Its Roles in Inflammatory Diseases. Int J Mol Sci, 2022, 23(2): 627. doi:10.3390/ijms23020627. |
[18] | Wang B, Xia Y, Zhou C, et al. CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression. JCI Insight, 2025, 10(1):e180962. doi:10.1172/jci.insight.180962. |
[19] | Rao LZ, Wang Y, Zhang L, et al. IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ, 2021, 28(4): 1270-1283. doi:10.1038/s41418-020-00650-6. |
[20] | Giaccone G, He Y. Current knowledge of small cell lung cancer transformation from non-small cell lung cancer. Semin Cancer Biol, 2023, 94: 1-10. doi:10.1016/j.semcancer.2023.05.006. |
[21] | Panneerselvam J, Srivastava A, Mehta M, et al. IL-24 Inhibits Lung Cancer Growth by Suppressing GLI1 and Inducing DNA Damage. Cancers (Basel), 2019, 11(12):1879. doi:10.3390/cancers11121879. |
[22] | Qu J, Xia Z, Liu Y, et al. Targeting Antheraea pernyi silk fibroin modified dual-gene coexpressing vector enhances gene transport and promotes lung tumor suppression. Int J Biol Macromol, 2024, 262(Pt 2): 130074. doi:10.1016/j.ijbiomac.2024.130074. |
[23] | Niu L, Chen G, Feng Y, et al. Polyethylenimine-Modified Bombyx mori Silk Fibroin as a Delivery Carrier of the ING4-IL-24 Coexpression Plasmid. Polymers (Basel), 2021, 13(20):3592. doi:10.3390/polym13203592. |
[24] | Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma. Front Immunol, 2023, 14: 1149203. doi:10.3389/fimmu.2023.1149203. |
[25] | Feng KN, Meng P, Zhang M, et al. IL-24 Contributes to Neutrophilic Asthma in an IL-17A-Dependent Manner and Is Suppressed by IL-37. Allergy Asthma Immunol Res, 2022, 14(5): 505-527. doi:10.4168/aair.2022.14.5.505. |
[26] | Feng KN, Meng P, Zou XL, et al. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res, 2022, 23(1): 244. doi:10.1186/s12931-022-02167-7. |
[27] | Luo M, Zhao F, Cheng H, et al. Macrophage polarization: an important role in inflammatory diseases. Front Immunol, 2024, 15:1352946. doi:10.3389/fimmu.2024.1352946. |
[28] | 冯康尼, 孟平, 张敏, 等. IL-24调控巨噬细胞极化介导气道炎症在过敏性哮喘小鼠中的作用. 中国病理生理杂志, 2022, 38(7): 1201-1209. doi:10.3969/j.issn.1000-4718.2022.07.007. |
[29] | Pokhreal D, Crestani B, Helou DG. Macrophage Implication in IPF: Updates on Immune, Epigenetic, and Metabolic Pathways. Cells, 2023, 12(17):2193. doi:10.3390/cells12172193. |
[30] | Xu Y, Lan P, Wang T. The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina (Kaunas), 2023, 59(11):1984. doi:10.3390/medicina59111984. |
[31] | Schleich F, Bougard N, Moermans C, et al. Cytokine-targeted therapies for asthma and COPD. Eur Respir Rev, 2023, 32(168). doi:10.1183/16000617.0193-2022. |
[32] | 李蕊, 肖漓. 慢性阻塞性肺疾病急性加重相关的免疫细胞及因子研究进展. 解放军医学杂志, 2023, 48(11): 1353-1358. |
[33] |
Patel VK, Kokkinis S, De Rubis G, et al. Curcumin liposomes attenuate the expression of cigarette smoke extract-induced inflammatory markers IL-8 and IL-24 in vitro. Excli j, 2024, 23: 904-907. doi:10.17179/excli2024-7467.
pmid: 39165583 |
[34] | Dankhara N, Holla I, Ramarao S, et al. Bronchopulmonary Dysplasia: Pathogenesis and Pathophysiology. J Clin Med, 2023, 12(13):4207. doi:10.3390/jcm12134207. |
[35] | Zhang Z, Jiang J, Li Z, et al. The Change of Cytokines and Gut Microbiome in Preterm Infants for Bronchopulmonary Dysplasia. Front Microbiol, 2022, 13: 804887. doi:10.3389/fmicb.2022.804887. |
[36] |
Gao R, Li Z, Ai D, et al. Interleukin-24 as a Pulmonary Target Cytokine in Bronchopulmonary Dysplasia. Cell Biochem Biophys, 2021, 79(2): 311-320. doi:10.1007/s12013-021-00968-z.
pmid: 33683657 |
[37] | Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int J Mol Sci, 2023, 24(6):5202. doi:10.3390/ijms24065202. |
[38] |
Menezes ME, Bhoopathi P, Pradhan AK, et al. Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Adv Cancer Res, 2018, 138:143-182. doi:10.1016/bs.acr.2018.02.005.
pmid: 29551126 |
[39] |
Kumar NP, Moideen K, Banurekha VV, et al. Modulation of Th1/Tc1 and Th17/Tc17 responses in pulmonary tuberculosis by IL-20 subfamily of cytokines. Cytokine, 2018, 108:190-196. doi:10.1016/j.cyto.2018.04.005.
pmid: 29684756 |
[1] | Liu Jingyi, Hou Yue, Wu Jianlin. A brief discussion on the origin and current status of pulmonary ground glass nodules from the perspective of imaging [J]. Journal of Tuberculosis and Lung Disease, 2025, 6(2): 121-124. |
[2] | Liu Fang, Ma Jintong, Liu Yongmei, Luo Peipei, Feng Yang, Liu Zhenlong, Wang Yuhong. Analysis of risk factors of chronic obstructive pulmonary disease complicated with pulmonary tuberculosis with tendency score matching method and construction of a prediction model [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 511-516. |
[3] | Fan Weifang, Huang Jinpeng, Yao Liwei. Advances in pulmonary rehabilitation nursing for patients with post-tuberculosis lung Disease [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 560-566. |
[4] | Zhu Yixing, Chang De. Current status and prospects of management of chronic respiratory diseases [J]. Journal of Tuberculosis and Lung Disease, 2024, 5(6): 567-572. |
[5] | Wang Yuxiang, Hu Qiumeng, Zheng Junfeng, Deng Guofang, Zhang Peize. Analysis of clinical characteristics and prognosis of pulmonary diseases caused by Mycobacterium kansassi and Mycobacterium intracellular [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(6): 480-485. |
[6] | Tan Shouyong. Health management of post-TB pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2023, 4(5): 342-345. |
[7] | Liu Linlin, Wang Xiufen, Jiang Youli, Gui Min, Chen Jingfang. Progress in the application of pulmonary rehabilitation training for patients with post tuberculosis lung disease [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(5): 420-424. |
[8] | REN Jing-juan, ZHAO Yan-lin. Research progress of music therapy in rehabilitation treatment of lung diseases [J]. Journal of Tuberculosis and Lung Disease, 2022, 3(2): 162-165. |
[9] | YAN Jin-yu, ZOU Tao, GUO Jian, XU Yong, TANG Pei-jun, FENG Yan-jun. Analysis of clinical features of Mycobacterium intracellulare pulmonary disease and Mycobacterium kansas pulmonary disease [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(3): 294-297. |
[10] | LIAO Xiao-qin, LIN Jian-dong, WU Di, CHEN Xiao-hong. Analysis of the clinical characteristics of Mycobacterium avian complex pulmonary disease and the risk factors of treatment effect [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 120-124. |
[11] | ZHOU Bi-xia, YUAN Gong-ling, ZENG Ling-wu, ZHU Yi, CHENG Xi, LI Min, WU Mei-ying. Comparative analysis of CT signs of Mycobacterium kansasii pulmonary disease and pulmonary tuberculosis [J]. Journal of Tuberculosis and Lung Disease, 2021, 2(2): 125-130. |
[12] | WU Jing, XU Yan, FANG Yong-mei, ZHANG Jing-jing, ZHANG Yan, ZHONG Feng. Diagnostic value of fluorescent staining combined with 1,3-β-D glucan test in chronic obstructive pulmonary disease complicated with fungal infection [J]. Journal of Tuberculosis and Lung Disease, 2020, 1(2): 140-143. |
[13] | WU Chong-chong, ZHAO Shao-hong, NIE Yong-kang, CAI Zu-long, YANG Li, JIN Xin. CT manifestations analysis of primary pulmonary cryptococcosis in immunocompetent or immunosuppressive patients [J]. Journal of Tuberculosis and Lung Health, 2015, 4(3): 162-168. |
[14] | FAN Xiang-yang. Clinical analysis of pulmonary tuberculosis complicated with fungal infection [J]. Journal of Tuberculosis and Lung Health, 2015, 4(2): 130-132. |
[15] | WU Hong, ZHANG Wei-zhen, CAI Shao-xi. The treatment of pulmonary fungal infection: a big problem around the world [J]. Journal of Tuberculosis and Lung Health, 2014, 3(1): 7-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||